Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Cardiac Troponin Complex: Cardiac Troponin C (TNNC1), Cardiac Troponin I (TNNI3), and Cardiac Troponin T (TNNT2)

  • Zabed Mahmud
  • Peter M. Hwang
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101901

Synonyms

Historical Background

The modern molecular understanding of muscle contraction took shape in the 1950s and 1960s. The sliding filament model was proposed in 1954, and it was known that muscle contraction was driven by myosin ATPase in the presence of actin. In the early 1960s, it was suspected, though not widely accepted, that muscle contraction is triggered by calcium. The idea was controversial, because while native preparations of actomyosin could be induced to relax by calcium-chelating agents, highly purified and reconstituted actomyosin did not display this behavior. In 1963, Ebashi demonstrated that...

This is a preview of subscription content, log in to check access.

References

  1. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503–12.  https://doi.org/10.1001/jama.2010.1768.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ebashi S. Third component participating in the superprecipitation of ‘Natural Actomyosin’. Nature. 1963;200:1010.PubMedCrossRefGoogle Scholar
  3. Ebashi S, Kodama A. A new protein factor promoting aggregation of tropomyosin. J Biochem. 1965;58:107–8.PubMedCrossRefGoogle Scholar
  4. Franklin AJ, Baxley T, Kobayashi T, Chalovich JM. The C-terminus of troponin T is essential for maintaining the inactive state of regulated actin. Biophys J. 2012;102:2536–44.  https://doi.org/10.1016/j.bpj.2012.04.037.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gaponenko V, Abusamhadneh E, Abbott MB, Finley N, Gasmi-Seabrook G, Solaro RJ, et al. Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponin C. J Biol Chem. 1999;274:16681–4.PubMedCrossRefGoogle Scholar
  6. Gomes AV, Harada K, Potter JD. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca(2+)-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J Mol Cell Cardiol. 2005a;39:754–65.  https://doi.org/10.1016/j.yjmcc.2005.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gomes AV, Liang J, Potter JD. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem. 2005b;280:30909–15.  https://doi.org/10.1074/jbc.M500287200.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Greaser ML, Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem. 1971;246:4226–33.PubMedPubMedCentralGoogle Scholar
  9. Hwang PM, Cai F, Pineda-Sanabria SE, Corson DC, Sykes BD. The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci USA. 2014;111:14412–7.  https://doi.org/10.1073/pnas.1410775111.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ishii Y, Lehrer SS. Two-site attachment of troponin to pyrene-labeled tropomyosin. J Biol Chem. 1991;266:6894–903.PubMedPubMedCentralGoogle Scholar
  11. Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene. 2015;571:153–66.  https://doi.org/10.1016/j.gene.2015.07.074.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Li MX, Spyracopoulos L, Sykes BD. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry. 1999;38:8289–98.  https://doi.org/10.1021/bi9901679.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. J Geriatr Cardiol. 2013;10:91–101.  https://doi.org/10.3969/j.issn.1671-5411.2013.01.014.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Morimoto S, Lu QW, Harada K, Takahashi-Yanaga F, Minakami R, Ohta M, et al. Ca(2+)-desensitizing effect of a deletion mutation Delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc Natl Acad Sci USA. 2002;99:913–8.  https://doi.org/10.1073/pnas.022628899.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Murakami K, Stewart M, Nozawa K, Tomii K, Kudou N, Igarashi N, et al. Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. Proc Natl Acad Sci USA. 2008;105:7200–5.  https://doi.org/10.1073/pnas.0801950105.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Parvatiyar MS, Pinto JR, Dweck D, Potter JD. Cardiac troponin mutations and restrictive cardiomyopathy. J Biomed Biotechnol. 2010;2010:350706.  https://doi.org/10.1155/2010/350706.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Pinto JR, Yang SW, Hitz MP, Parvatiyar MS, Jones MA, Liang J, et al. Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach. J Biol Chem. 2011;286:20901–12.  https://doi.org/10.1074/jbc.M111.234336.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: evolution, regulation, and protein structure-function relationships. Gene. 2016;576:385–94.  https://doi.org/10.1016/j.gene.2015.10.052.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Sia SK, Li MX, Spyracopoulos L, Gagne SM, Liu W, Putkey JA, et al. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem. 1997;272:18216–21.PubMedCrossRefGoogle Scholar
  20. Solaro RJ, Henze M, Kobayashi T. Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res. 2013;112:355–66.  https://doi.org/10.1161/CIRCRESAHA.112.268672.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sommese RF, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM. Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human beta-cardiac myosin. PloS one. 2013;8:e83403.  https://doi.org/10.1371/journal.pone.0083403.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ. Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem. 2003;278:35135–44.  https://doi.org/10.1074/jbc.M306325200.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Takeda S, Yamashita A, Maeda K, Maeda Y. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature. 2003;424:35–41.  https://doi.org/10.1038/nature01780.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tripet B, Van Eyk JE, Hodges RS. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol. 1997;271:728–50.  https://doi.org/10.1006/jmbi.1997.1200.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wei B, Jin JP. TNNT1, TNNT2, and TNNT3: isoform genes, regulation, and structure-function relationships. Gene. 2016;582:1–13.  https://doi.org/10.1016/j.gene.2016.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wijnker PJ, Murphy AM, Stienen GJ, van der Velden J. Troponin I phosphorylation in human myocardium in health and disease. Neth Heart J. 2014;22:463–9.  https://doi.org/10.1007/s12471-014-0590-4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Zhang R, Zhao J, Mandveno A, Potter JD. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res. 1995;76:1028–35.PubMedCrossRefGoogle Scholar
  28. Zhang P, Kirk JA, Ji W, dos Remedios CG, Kass DA, Van Eyk JE, et al. Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation. 2012;126:1828–37.  https://doi.org/10.1161/CIRCULATIONAHA.112.096388.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada
  2. 2.Department of MedicineUniversity of AlbertaEdmontonCanada