Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Glioma-Associated Oncogene 1 (GLI1)

  • Aryan Ala’Aldeen
  • David L. Marks
  • Rachel L. O. Olson
  • Martin E. Fernandez-Zapico
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101890

Synonyms

Historical Background and GLI Family Tree

Vogelstein and colleagues discovered GLI1 (Kinzler et al. 1987) as an amplified gene in a human glioma cell line derived from a 46-year-old male patient. The investigation utilized a denaturation-renaturation gel technique to identify DNA regions that are extensively amplified which led to the observation of a greater than 50-fold amplification of a novel gene, originally named GLI (Kinzler et al. 1987). Cloning and sequencing of the GLI gene showed that its predicted protein product contained five C2H2 zinc fingers and was structurally related to the Kruppel gene family (Kinzler et al. 1988; Ruppert et al. 1988). After the cloning of additional GLI-related genes, GLI was renamed GLI1 (Ruppert et al. 1988; Ruiz i Altaba 1999).

In vertebrates, the GLI gene family consists of GLI1, GLI2, and GLI3. The encoded GLI proteins have regions of high homology, but each...

This is a preview of subscription content, log in to check access.

References

  1. Aberger F, Ruiz IAA. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol. 2014;33:93–104.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwal NK, Kim CH, Kunkalla K, Konno H, Tjendra Y, Kwon D, et al. Active IKKbeta promotes the stability of GLI1 oncogene in diffuse large B-cell lymphoma. Blood. 2016;127(5):605–15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agyeman A, Jha BK, Mazumdar T, Houghton JA. Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget. 2014;5(12):4492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19(11):1410–22.PubMedCrossRefGoogle Scholar
  5. Atwood SX, Li M, Lee A, Tang JY, Oro AE. GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature. 2013;494(7438):484–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aza-Blanc P, Lin HY, Ruiz i Altaba A, Kornberg TB. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development. 2000;127(19):4293–301.PubMedGoogle Scholar
  7. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL. GLI2, but not GLI1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development. 2002;129(20):4753–61.PubMedGoogle Scholar
  8. Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee YC, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest. 2011;121(1):148–60.PubMedCrossRefGoogle Scholar
  9. Bolanos AL, Milla CM, Lira JC, Ramirez R, Checa M, Barrera L, et al. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. Am J Phys Lung Cell Mol Phys. 2012;303(11):L978–90.Google Scholar
  10. Bosco-Clement G, Zhang F, Chen Z, Zhou HM, Li H, Mikami I, et al. Targeting Gli transcription activation by small molecule suppresses tumor growth. Oncogene. 2014;33(16):2087–97.PubMedCrossRefGoogle Scholar
  11. Chen Y, Bieber MM, Teng NN. Hedgehog signaling regulates drug sensitivity by targeting ABC transporters ABCB1 and ABCG2 in epithelial ovarian cancer. Mol Carcinog. 2014;53(8):625–34.PubMedGoogle Scholar
  12. Choi SS, Omenetti A, Syn WK, Diehl AM. The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol. 2011;43(2):238–44.PubMedCrossRefGoogle Scholar
  13. Cohen MM Jr. Hedgehog signaling update. Am J Med Genet A. 2010;152A(8):1875–914.PubMedCrossRefGoogle Scholar
  14. Comba A, Almada LL, Tolosa EJ, Iguchi E, Marks DL, Vara Messler M, et al. Nuclear factor of activated T cells-dependent down-regulation of the transcription factor glioma-associated protein 1 (GLI1) underlies the growth inhibitory properties of arachidonic acid. J Biol Chem. 2016;291(4):1933–47.PubMedCrossRefGoogle Scholar
  15. Cox B, Briscoe J, Ulloa F. SUMOylation by Pias1 regulates the activity of the Hedgehog dependent Gli transcription factors. PLoS One. 2010;5(8):e11996.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Denham M, Thompson LH, Leung J, Pebay A, Bjorklund A, Dottori M. GLI1 is an inducing factor in generating floor plate progenitor cells from human embryonic stem cells. Stem Cells. 2010;28(10):1805–15.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dennler S, Andre J, Alexaki I, Li A, Magnaldo T, ten Dijke P, et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of GLI2 and GLI1 expression in vitro and in vivo. Cancer Res. 2007;67(14):6981–6.PubMedCrossRefGoogle Scholar
  18. Di Magno L, Coni S, Di Marcotullio L, Canettieri G. Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy. Biochim Biophys Acta. 2015;1856(1):62–72.PubMedGoogle Scholar
  19. Di Marcotullio L, Greco A, Mazza D, Canettieri G, Pietrosanti L, Infante P, et al. Numb activates the E3 ligase Itch to control GLI1 function through a novel degradation signal. Oncogene. 2011;30(1):65–76.PubMedCrossRefGoogle Scholar
  20. El-Zaatari M, Kao JY, Tessier A, Bai L, Hayes MM, Fontaine C, et al. GLI1 deletion prevents Helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS One. 2013;8(3):e58935.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fernandez-Zapico ME. Primers on molecular pathways GLI: more than just Hedgehog? Pancreatology. 2008;8(3):227–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fiaschi M, Kolterud A, Nilsson M, Toftgard R, Rozell B. Targeted expression of GLI1 in the salivary glands results in an altered differentiation program and hyperplasia. Am J Pathol. 2011;179(5):2569–79.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E, et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell. 2006;124(1):47–59.PubMedCrossRefGoogle Scholar
  24. Harris LG, Samant RS, Shevde LA. Hedgehog signaling: networking to nurture a promalignant tumor microenvironment. Mol Cancer Res. 2011;9(9):1165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Heride C, Rigden DJ, Bertsoulaki E, Cucchi D, De Smaele E, Clague MJ, et al. The centrosomal deubiquitylase USP21 regulates GLI1 transcriptional activity and stability. J Cell Sci. 2016;129(21):4001–13.PubMedPubMedCentralGoogle Scholar
  26. Hui CC, Angers S. Gli proteins in development and disease. Annu Rev Cell Dev Biol. 2011;27:513–37.PubMedCrossRefGoogle Scholar
  27. Hwang RF, Moore TT, Hattersley MM, Scarpitti M, Yang B, Devereaux E, et al. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res. 2012;10(9):1147–57.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, et al. GLI1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 2015;34(2):200–17.PubMedCrossRefGoogle Scholar
  29. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med. 2010;16(12):1429–33.PubMedCrossRefGoogle Scholar
  30. Ji Z, Mei FC, Xie J, Cheng X. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem. 2007;282(19):14048–55.PubMedCrossRefGoogle Scholar
  31. Katoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 2009;9(7):873–86.PubMedCrossRefGoogle Scholar
  32. Kikuchi I, Takahashi-Kanemitsu A, Sakiyama N, Tang C, Tang PJ, Noda S, et al. Dephosphorylated parafibromin is a transcriptional coactivator of the Wnt/Hedgehog/Notch pathways. Nat Commun. 2016;7:12887.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17(4):388–99.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kinzler KW, Vogelstein B. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol. 1990;10(2):634–42.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, et al. Identification of an amplified, highly expressed gene in a human glioma. Science. 1987;236(4797):70–3.PubMedCrossRefGoogle Scholar
  36. Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988;332(6162):371–4.PubMedCrossRefGoogle Scholar
  37. Kramann R. Hedgehog Gli signalling in kidney fibrosis. Nephrol Dial Transplant. 2016;31(12):1989–95.PubMedCrossRefGoogle Scholar
  38. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular GLI1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015a;16(1):51–66.PubMedCrossRefGoogle Scholar
  39. Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest. 2015b;125(8):2935–51.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lauth M, Toftgard R. Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle. 2007;6(20):2458–63.PubMedCrossRefGoogle Scholar
  41. Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007;104(20):8455–60.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lee RT, Zhao Z, Ingham PW. Hedgehog signalling. Development. 2016;143(3):367–72.PubMedCrossRefGoogle Scholar
  43. Li YH, Luo J, Mosley YY, Hedrick VE, Paul LN, Chang J, et al. AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma. Cell Rep. 2015;12(4):599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lo HW, Zhu H, Cao X, Aldrich A, Ali-Osman F. A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res. 2009;69(17):6790–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills L, Elsawa SF, Lund G, et al. A novel AKT1-GLI3-VMP1 pathway mediates KRAS-induced autophagy in cancer cells. J Biol Chem. 2012;287(30):25325–34Google Scholar
  46. Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, et al. Regulation of GLI1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem. 2002;277(38):35156–61.PubMedCrossRefGoogle Scholar
  47. Mazza D, Infante P, Colicchia V, Greco A, Alfonsi R, Siler M, et al. PCAF ubiquitin ligase activity inhibits Hedgehog/GLI1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ. 2013;20(12):1688–97.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev. 2014;40(1):12–21.PubMedCrossRefGoogle Scholar
  49. Merchant A, Joseph G, Wang Q, Brennan S, Matsui W. GLI1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood. 2010;115(12):2391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Mills LD, Zhang Y, Marler RJ, Herreros-Villanueva M, Zhang L, Almada LL, et al. Loss of the transcription factor GLI1 identifies a signaling network in the tumor microenvironment mediating KRAS oncogene-induced transformation. J Biol Chem. 2013;288(17):11786–94.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mills LD, Zhang L, Marler R, Svingen P, Fernandez-Barrena MG, Dave M, et al. Inactivation of the transcription factor GLI1 accelerates pancreatic cancer progression. J Biol Chem. 2014;289(23):16516–25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mosimann C, Hausmann G, Basler K. The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control. Mech Dev. 2009;126(5–6):394–405.PubMedCrossRefGoogle Scholar
  53. Nakamura I, Fernandez-Barrena MG, Ortiz-Ruiz MC, Almada LL, Hu C, Elsawa SF, et al. Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration. J Biol Chem. 2013;288(29):21389–98.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Nye MD, Almada LL, Fernandez-Barrena MG, Marks DL, Elsawa SF, Vrabel A, et al. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor beta-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner. J Biol Chem. 2014;289(22):15495–506.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Palle K, Mani C, Tripathi K, Athar M. Aberrant GLI1 activation in DNA damage response, carcinogenesis and chemoresistance. Cancers (Basel). 2015;7(4):2330–51.CrossRefGoogle Scholar
  56. Pandolfi S, Stecca B. Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med. 2015;17:e5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, et al. Mouse GLI1 mutants are viable but have defects in SHH signaling in combination with a GLI2 mutation. Development. 2000;127(8):1593–605.PubMedGoogle Scholar
  58. Pavletich NP, Pabo CO. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993;261(5129):1701–7.PubMedCrossRefGoogle Scholar
  59. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the Sonic Hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel). 2016;8(2):22.CrossRefGoogle Scholar
  60. Ruiz i Altaba A. Gli proteins and Hedgehog signaling: development and cancer. Trends Genet. 1999;15(10):418–25.PubMedCrossRefGoogle Scholar
  61. Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, et al. The GLI-Kruppel family of human genes. Mol Cell Biol. 1988;8(8):3104–13.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H. Regulation of GLI2 and GLI3 activities by an amino-terminal repression domain: implication of GLI2 and GLI3 as primary mediators of Shh signaling. Development. 1999;126(17):3915–24.PubMedGoogle Scholar
  63. Schumacher MA, Donnelly JM, Engevik AC, Xiao C, Yang L, Kenny S, et al. Gastric Sonic Hedgehog acts as a macrophage chemoattractant during the immune response to Helicobacter pylori. Gastroenterology. 2012;142(5):1150–9. e6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sheng T, Chi S, Zhang X, Xie J. Regulation of GLI1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem. 2006;281(1):9–12.PubMedCrossRefGoogle Scholar
  65. Shi Q, Han Y, Jiang J. Suppressor of fused impedes Ci/Gli nuclear import by opposing Trn/Kapbeta2 in Hedgehog signaling. J Cell Sci. 2014;127(Pt 5):1092–103.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Shi X, Wang Q, Gu J, Xuan Z, Wu JI. SMARCA4/BRG1 coordinates genetic and epigenetic networks underlying Shh-type medulloblastoma development. Oncogene. 2016;35(44):5746–58.PubMedCrossRefGoogle Scholar
  67. Shimokawa T, Tostar U, Lauth M, Palaniswamy R, Kasper M, Toftgard R, et al. Novel human glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanisms in the terminal transduction of the hedgehog signal. J Biol Chem. 2008;283(21):14345–54.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Stecca B, Ruiz IAA. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol. 2010;2(2):84–95.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Stecca B, Ruiz i Altaba A. A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J. 2009;28(6):663–76.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Szczepny A, Wagstaff KM, Dias M, Gajewska K, Wang C, Davies RG, et al. Overlapping binding sites for importin beta1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (GLI1) regulate its nuclear localization. Biochem J. 2014;461(3):469–76.PubMedCrossRefGoogle Scholar
  71. Xu Q, Liu X, Zheng X, Yao Y, Wang M, Liu Q. The transcriptional activity of GLI1 is negatively regulated by AMPK through Hedgehog partial agonism in hepatocellular carcinoma. Int J Mol Med. 2014;34(3):733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Yoon JW, Liu CZ, Yang JT, Swart R, Iannaccone P, Walterhouse D. GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J Biol Chem. 1998;273(6):3496–501.PubMedCrossRefGoogle Scholar
  73. Yoon JW, Lamm M, Iannaccone S, Higashiyama N, Leong KF, Iannaccone P, et al. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair. 2015;34:9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Zhan X, Shi X, Zhang Z, Chen Y, Wu JI. Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc Natl Acad Sci USA. 2011;108(31):12758–63.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget. 2016;7(49):80190–207.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Aryan Ala’Aldeen
    • 1
  • David L. Marks
    • 1
  • Rachel L. O. Olson
    • 1
  • Martin E. Fernandez-Zapico
    • 1
  1. 1.Schulze Center for Novel TherapeuticsMayo ClinicRochesterUSA