Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Jorge L. CervantesEmail author
  • Nancy Maulén
  • Han-Ha Chai
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101876


Historical Background

Although sharing a similar structure, genomic localization, and involvement in RNA sensing, TLR7 and TLR8 are found in distinct immune cells (Hornung et al. 2002). This selective expression correlates with distinct biological functionality and production of type I IFNs (Gorden et al. 2005; Cervantes et al. 2011).

The initial observations that TLR8-deficient mice did not show any defect in nucleic acid detection, due to a lack of response to imidazoquinolines and RNA (Heil et al. 2004; Jurk et al. 2002), lead to a relative lack of interest in this particular endosomal TLR. Very recently it has been reported that overexpression of mTLR8 is required for the activation of transcription factor NF-κB and the production of TNF-α (Li et al. 2016). These results demonstrate that mTLR8 is indeed functional and does play a role in the activation of innate immune responses.

Structural Features of the TLR8 Ligand Recognition Domain

This is a preview of subscription content, log in to check access.


  1. Bergstrom B, Aune MH, Awuh JA, Kojen JF, Blix KJ, Ryan L, et al. TLR8 senses Staphylococcus aureus RNA in human primary monocytes and macrophages and induces IFN-beta production via a TAK1-IKKbeta-IRF5 signaling pathway. J Immunol. 2015;195(3):1100–11.PubMedCrossRefGoogle Scholar
  2. Bruns H, Stenger S. New insights into the interaction of Mycobacterium tuberculosis and human macrophages. Future Microbiol. 2014;9(3):327–41.PubMedCrossRefGoogle Scholar
  3. Bukhari M, Aslam MA, Khan A, Iram Q, Akbar A, Naz AG, et al. TLR8 gene polymorphism and association in bacterial load in southern Punjab of Pakistan: an association study with pulmonary tuberculosis. Int J Immunogenet. 2015;42(1):46–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cervantes JL, Dunham-Ems SM, La Vake CJ, Petzke MM, Sahay B, Sellati TJ, et al. Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-beta. Proc Natl Acad Sci USA. 2011;108(9):3683–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cervantes JL, Weinerman B, Basole C, Salazar JC. TLR8: the forgotten relative revindicated. Cell Mol Immunol. 2012;9(6):434–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cervantes JL, La Vake CJ, Weinerman B, Luu S, O’Connell C, Verardi PH, et al. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes. J Leukoc Biol. 2013;94(6):1231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chai HH, Lim D, Suk JE, Choi BH, Cho YM. Design of anti-BVDV drug based on common chemical features, their interaction, and scaffolds of TLR8 agonists. Int J Biol Macromol. 2016;92:1095–112.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Conley ME. Immunodeficiency: UNC-93B gets a toll call. Trends Immunol. 2007;28(3):99–101.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dalgic N, Tekin D, Kayaalti Z, Cakir E, Soylemezoglu T, Sancar M. Relationship between toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis. Dis Markers. 2011;31(1):33–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Daud II, Scott ME, Ma Y, Shiboski S, Farhat S, Moscicki AB. Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. 2011;128(4):879–86.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Davila S, Hibberd ML, Hari Dass R, Wong HE, Sahiratmadja E, Bonnard C, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4(10):e1000218.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ, et al. TLR8 deficiency leads to autoimmunity in mice. J Clin Invest. 2010;120(10):3651–62.PubMedPubMedCentralGoogle Scholar
  13. Eigenbrod T, Pelka K, Latz E, Kreikemeyer B, Dalpke AH. TLR8 senses bacterial RNA in human monocytes and plays a nonredundant role for recognition of Streptococcus pyogenes. J Immunol. 2015;195(3):1092–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gantier MP, Irving AT, Kaparakis-Liaskos M, Xu D, Evans VA, Cameron PU, et al. Genetic modulation of TLR8 response following bacterial phagocytosis. Hum Mutat. 2010;31(9):1069–79.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 2005;174(3):1259–68.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gosu V, Basith S, Kwon OP, Choi S. Therapeutic applications of nucleic acids and their analogues in Toll-like receptor signaling. Molecules. 2012;17(11):13503–29.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gu L, Zhou J, Tan J, Yang J, Shen T, Jiang H, et al. Association of TLR8 gene rs3764880 polymorphisms with susceptibility and lipid metabolism- and inflammation response-related quantitative traits of ischemic stroke in southern Chinese Han male population. J Neurol Sci. 2016;370:94–9.PubMedCrossRefGoogle Scholar
  18. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.PubMedCrossRefGoogle Scholar
  19. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168(9):4531–7.PubMedCrossRefGoogle Scholar
  20. Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, et al. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia. 2015;29(4):918–26.PubMedCrossRefGoogle Scholar
  21. Ishii N, Funami K, Tatematsu M, Seya T, Matsumoto M. Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells. J Immunol. 2014;193(10):5118–28.PubMedCrossRefGoogle Scholar
  22. Itoh H, Tatematsu M, Watanabe A, Iwano K, Funami K, Seya T, et al. UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling. PLoS One. 2011;6(12):e28500.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3(6):499.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol. 2013;93(6):847–63.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kornblit B, Enevold C, Wang T, Spellman S, Haagenson M, Lee SJ, et al. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21(2):259–65.PubMedCrossRefGoogle Scholar
  27. Kruger A, Oldenburg M, Chebrolu C, Beisser D, Kolter J, Sigmund AM, et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 2015;16(12):1656–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Larange A, Antonios D, Pallardy M, Kerdine-Romer S. TLR7 and TLR8 agonists trigger different signaling pathways for human dendritic cell maturation. J Leukoc Biol. 2009;85(4):673–83.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR, Schekman R, et al. UNC93B1 mediates differential trafficking of endosomal TLRs. Elife. 2013;2:e00291.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Li B, Ma HM, Wang XX, Li YQ, Liu HB, Hong LZ, et al. Expression and significance of toll-like receptors 7 and 8 in brain and lung tissues of death cases caused by EV71 infection. Zhongguo Dang Dai Er Ke Za Zhi. 2015;17(10):1051–5.PubMedPubMedCentralGoogle Scholar
  32. Li T, He X, Jia H, Chen H, Zeng S, Fang Y, Jin Q, Jing Z. Molecular cloning and functional characterization of murine toll-like receptor 8. Mol Med Rep. 2016;13:1119–26.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Makni-Maalej K, Marzaioli V, Boussetta T, Belambri SA, Gougerot-Pocidalo MA, Hurtado-Nedelec M, et al. TLR8, but not TLR7, induces the priming of the NADPH oxidase activation in human neutrophils. J Leukoc Biol. 2015;97(6):1081–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Miyake K, Shibata T, Ohto U, Shimizu T. Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. J Leukoc Biol. 2016.  https://doi.org/10.1189/jlb.4MR0316-108R.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Netea MG, Wijmenga C, O’Neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol. 2012;13(6):535–42.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Papaioannou AI, Spathis A, Kostikas K, Karakitsos P, Papiris S, Rossios C. The role of endosomal toll-like receptors in asthma. Eur J Pharmacol. 2016.  https://doi.org/10.1016/j.ejphar.2016.09.033.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Paul AM, Acharya D, Le L, Wang P, Stokic DS, Leis AA, et al. TLR8 couples SOCS-1 and restrains TLR7-mediated antiviral immunity, exacerbating West Nile virus infection in mice. J Immunol. 2016;197(11):4425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Pelka K, Phulphagar K, Zimmermann J, Stahl R, Schmid-Burgk JL, Schmidt T, et al. Cutting edge: the UNC93B1 tyrosine-based motif regulates trafficking and TLR responses via separate mechanisms. J Immunol. 2014;193(7):3257–61.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science. 2005;309(5739):1380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Salie M, Daya M, Lucas LA, Warren RM, van der Spuy GD, van Helden PD, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol. 2015;34:221–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schurz H, Daya M, Moller M, Hoal EG, Salie M. TLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One. 2015;10(10):e0139711.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Song DH, Lee JO. Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev. 2012;250(1):216–29.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Song GG, Lee YH. Association between BLK polymorphisms and susceptibility to SLE: a meta-analysis. Z Rheumatol. 2016.  https://doi.org/10.1007/s00393-016-0072-8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sun Q, Zhang Q, Xiao HP, Bai C. Toll-like receptor polymorphisms and tuberculosis susceptibility: A comprehensive meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 2015;35(2):157–68.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Tang J, Zhan L, Qin C. Inhibition of TLR8 mediated signaling promotes BCG induced apoptosis in THP-1 cells. Microb Pathog. 2016;93:78–82.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science. 2013;339(6126):1426–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015;22(2):109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Tanji H, Ohto U, Motoi Y, Shibata T, Miyake K, Shimizu T. Autoinhibition and relief mechanism by the proteolytic processing of Toll-like receptor 8. Proc Natl Acad Sci USA. 2016;113(11):3012–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Thada S, Valluri VL, Gaddam SL. Influence of Toll-like receptor gene polymorphisms to tuberculosis susceptibility in humans. Scand J Immunol. 2013;78(3):221–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Tian T, Sun D, Wang P, Wang H, Bai X, Yang X, et al. Roles of Toll-like receptor 7 and 8 in prevention of intrauterine transmission of hepatitis B virus. Cell Physiol Biochem. 2015;37(2):445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tran NL, Manzin-Lorenzi C, Santiago-Raber ML. Toll-like receptor 8 deletion accelerates autoimmunity in a mouse model of lupus through a Toll-like receptor 7-dependent mechanism. Immunology. 2015;145(1):60–70.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem. 2006;281(49):37427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Wang CH, Eng HL, Lin KH, Liu HC, Chang CH, Lin TM. Functional polymorphisms of TLR8 are associated with hepatitis C virus infection. Immunology. 2014b;141(4):540–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wang CM, Chang SW, Wu YJ, Lin JC, Ho HH, Chou TC, et al. Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep. 2014a;4:3792.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Willie B, Hall NB, Stein CM, Jurevic RJ, Weinberg A, Mehlotra RK, et al. Association of Toll-like receptor polymorphisms with HIV status in North Americans. Genes Immun. 2014;15(8):569–77.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Wu L, Hu Y, Li D, Jiang W, Xu B. Screening toll-like receptor markers to predict latent tuberculosis infection and subsequent tuberculosis disease in a Chinese population. BMC Med Genet. 2015;16:19.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zhang Q, Qian FH, Yin XW, Cao Q, Bai JL, Du Q, et al. Associations of Toll-like receptor 7 and 8 polymorphisms with asthma and asthma-related phenotypes in a Chinese Han population. Iran J Allergy Asthma Immunol. 2015;14(6):569–80.PubMedPubMedCentralGoogle Scholar
  58. Zimmermann M, Arruda-Silva F, Bianchetto-Aguilera F, Finotti G, Calzetti F, Scapini P, et al. IFNalpha enhances the production of IL-6 by human neutrophils activated via TLR8. Sci Rep. 2016;6:19674.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jorge L. Cervantes
    • 1
    Email author
  • Nancy Maulén
    • 2
  • Han-Ha Chai
    • 3
  1. 1.Paul L. Foster School of MedicineTexas Tech University Health Sciences CenterEl PasoUSA
  2. 2.Laboratorio ClínicoHospital Félix Bulnes CerdaSantiagoChile
  3. 3.National Institute of Animal Science, RDAWanju, Jeollabuk-doKorea