Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Na+/HCO3 Cotransporter NBCn1

  • Ying Liu
  • Xiao-Yu Wang
  • Zhang-Dong Xie
  • Li-Ming ChenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101854


 NBC2;  NBC3;  NBCn1;  SLC4A7

Historical Background

NBCn1 is an electroneutral Na+/HCO3 cotransporter encoded by SLC4A7 gene, a member of the bicarbonate transporter family of solute carrier 4 (SLC4). In total, this family contains ten members: (1) three electroneutral anion exchangers AE1 (SLC4A1), AE2 (SLC4A2), and AE3 (SLC4A3); (2) five Na+-coupled HCO3 transporters (NCBTs), including two electrogenic Na+/HCO3 cotransporters NBCe1 (SLC4A4), NBCe2 (SLC4A5), two electroneutral Na+/HCO3 cotransporters NBCn1 and NBCn2 (SLC4A10), and an electroneutral Na+-driven Cl/HCO3 exchanger NDCBE (SLC4A8); (3) two less well-characterized members SLC4A9 and SLC4A11.

The association between the transport of Na+ and HCO3 was reported in 1970s in epithelial cells from different systems, such as proximal tubules (Burg and Green 1977) and jejunum (Turnberg et al. 1970; Podesta and Mettrick 1977). In 1983, Boron and Boulpaep clearly conceptualized for the first time Na+/HCO3...

This is a preview of subscription content, log in to check access.


  1. Aalkjaer C, Cragoe Jr EJ. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels. J Physiol. 1988;402:391–410.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aalkjaer C, Hughes A. Chloride and bicarbonate transport in rat resistance arteries. J Physiol. 1991;436:57–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aickin CC. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence. J Physiol. 1994;479:301–16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science. 2015;350:680–4.CrossRefPubMedGoogle Scholar
  5. Boedtkjer E, Aalkjaer C. Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res. 2012;49:479–96.CrossRefPubMedGoogle Scholar
  6. Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Fuchtbauer AC, et al. Disruption of Na+,HCO3 cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice. Circulation. 2011;124:1819–29.CrossRefPubMedGoogle Scholar
  7. Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM, et al. Contribution of Na+,HCO3-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer. 2013;132:1288–99.CrossRefPubMedGoogle Scholar
  8. Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, et al. Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet. 2003;34:313–9.CrossRefPubMedGoogle Scholar
  9. Bolton TB. Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol. 2006;570:5–11.CrossRefPubMedGoogle Scholar
  10. Bonanno JA, Giasson C. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. II. Na+:HCO3 cotransport and Cl/HCO3 exchange. Invest Ophthalmol Vis Sci. 1992;33:3068–79.PubMedGoogle Scholar
  11. Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3 transport. J Gen Physiol. 1983;81:53–94.CrossRefPubMedGoogle Scholar
  12. Burg M, Green N. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am J Phys. 1977;233(4):F307–F14.Google Scholar
  13. Chen LM, Liu Y, Boron WF. Role of an extracellular loop in determining the stoichiometry of Na/HCO3 cotransporters. J Physiol. 2011;589:877–90.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi I, Aalkjær C, Boulpaep EL, Boron WF. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature. 2000;405:571–5.CrossRefPubMedGoogle Scholar
  15. Danielsen AA, Parker MD, Lee S, Boron WF, Aalkjaer C, Boedtkjer E. Splice cassette II of Na+,HCO3 cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions. J Biol Chem. 2013;288:8146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dart C, Vaughan-Jones RD. Na+-HCO3 symport in the sheep cardiac Purkinje fibre. J Physiol. 1992;451:365–85.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gleeson D, Smith ND, Boyer JL. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes. J Clin Invest. 1989;84:312–21.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF. Regulation and roles of bicarbonate transporters in cancer. Front Physiol. 2014;5:130.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ishibashi K, Sasaki S, Marumo F. Molecular cloning of a new sodium bicarbonate cotransporter cDNA from human retina. Biochem Biophys Res Commun. 1998;246:535–8.CrossRefPubMedGoogle Scholar
  21. L’Allemain G, Paris S, Pouysségur J. Role of a Na+-dependent Cl/HCO3 exchange in regulation of intracellular pH in fibroblasts. J Biol Chem. 1985;260:4877–83.PubMedGoogle Scholar
  22. la Cour M. Rheogenic sodium-bicarbonate co-transport across the retinal membrane of the frog retinal pigment epithelium. J Physiol. 1989;419:539–53.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lee S, Axelsen TV, Andersen AP, Vahl P, Pedersen SF, Boedtkjer E. Disrupting Na,HCO3-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene. 2016;35(16):2112–22.CrossRefPubMedGoogle Scholar
  24. Liu Y, Qin X, Wang DK, Guo YM, Gill HS, Morris N, et al. Effects of optional structural elements, including two alternative amino termini and a new splicing cassette IV, on the function of NBCn1 (SLC4A7). J Physiol. 2013;591:4983–5004.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Liu Y, Yang J, Chen LM. Structure and function of SLC4 family HCO3 transporters. Front Physiol. 2015;6:355.PubMedPubMedCentralGoogle Scholar
  26. Lopez IA, Acuna D, Galbraith G, Bok D, Ishiyama A, Liu W, et al. Time course of auditory impairment in mice lacking the electroneutral sodium bicarbonate cotransporter NBC3 (slc4a7). Brain Res Dev Brain Res. 2005;160:63–77.CrossRefPubMedGoogle Scholar
  27. Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium coupled bicarbonate transporters. Physiol Rev. 2013;93:803–959.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Podesta RB, Mettrick DF. HCO3 transport in rat jejunum: relationship to NaCl and H2O transport in vivo. Am J Phys. 1977;232:E62–8.Google Scholar
  29. Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem. 1999;274:16569–75.CrossRefPubMedGoogle Scholar
  30. Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32.CrossRefPubMedGoogle Scholar
  31. Renner EL, Lake JR, Scharschmidt BF, Zimmerli B, Meier PJ. Rat hepatocytes exhibit basolateral Na+/HCO3 cotransport. J Clin Invest. 1989;83:1225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature. 1997;387:409–13.CrossRefPubMedGoogle Scholar
  33. Schwiening CJ, Boron WF. Regulation of intracellular pH in pyramidal neurons from the rat hippocampus by Na+-dependent Cl-HCO3 exchange. J Physiol. 1994;475:59–67.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Turnberg LA, Fordtran JS, Carter NW, Rector Jr FC. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J Clin Investig. 1970;49:548–56.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Wang Y, Tandan S, Hill JA. Calcineurin-dependent ion channel regulation in heart. Trends Cardiovasc Med. 2014;24:14–22.CrossRefPubMedGoogle Scholar
  36. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11:671–7.CrossRefPubMedGoogle Scholar
  37. Weiner ID, Hamm LL. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol. 2007;69:317–40.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Yang D, Shcheynikov N, Muallem S. IRBIT: it is everywhere. Neurochem Res. 2011;36:1166–74.CrossRefPubMedGoogle Scholar
  39. Zhang D, Kiyatkin A, Bolin JT, Low PS. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood. 2000;96:2925–33.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ying Liu
    • 1
  • Xiao-Yu Wang
    • 1
  • Zhang-Dong Xie
    • 1
  • Li-Ming Chen
    • 1
    Email author
  1. 1.Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of EducationHuazhong University of Science and Technology School of Life Science and TechnologyWuhanChina