Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 1

  • Ernő ZádorEmail author
  • Magdolna Kósa
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101795


Historical Background

The contraction and relaxation of skeletal muscle is regulated by the concomitant rise and fall of the cytoplasmic calcium level. The Ca2+ is released from the sarcoplasmic reticulum by ryanodine receptor and taken back to the SR by SERCA pumps. The idea of a relaxing factor had been put forward for a long time by many researchers seeking for control mechanism of muscle function. The successful candidate was found in a high-speed pellet of rabbit white skeletal muscle capable of hydrolyzing ATP in Ca2+- and Mg2+-dependent manner and requiring the presence of phospholipids. The dependence on phospholipids and incompatibility to detergents implicated that self-forming sealed vesicles accumulated...

This is a preview of subscription content, log in to check access.



Thank you to C. Toyoshima for allowing to use images and legends of Fig. 1 from his review article (Toyoshima 2009).


  1. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arruda AP, Ketzer LA, Nigro M, Galina A, Carvalho DP, de Meis L. Cold tolerance in hypothyroid rabbits: role of skeletal muscle mitochondria and sarcoplasmic reticulum Ca2+ ATPase isoform 1 heat production. Endocrinology. 2008;149:6262–71.CrossRefPubMedGoogle Scholar
  3. Brandl CJ, Green NM, Korczak B, MacLennan DH. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986;44:597–607.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brandl CJ, deLeon S, Martin DR, MacLennan DH. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem. 1987;262:3768–74.PubMedPubMedCentralGoogle Scholar
  5. Burk SE, Lytton J, MacLennan DH, Shull GE. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989;264:18561–8.PubMedPubMedCentralGoogle Scholar
  6. Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, et al. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol. 2001;153:1301–14.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fajardo VA, Bombardier E, Vigna C, Devji T, Bloemberg D, Gamu D, et al. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One. 2013;8:e84304.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet. 2005;14:2189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  9. MacLennan DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970;245:4508–18.PubMedPubMedCentralGoogle Scholar
  10. MacLennan DH, Brandl CJ, Korczak B, Green NM. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985;316:696–700.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Mázala DA, Pratt SJ, Chen D, Molkentin JD, Lovering RM, Chin ER. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. Am J Phys Cell Phys. 2015;308:C699–709.CrossRefGoogle Scholar
  12. Michelangeli F, East JM. A diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans. 2011;39:789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Jablecki CK, et al. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 1996;14:191–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Sacchetto R, Bertipaglia I, Giannetti S, Cendron L, Mascarello F, Damiani E, et al. Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. J Struct Biol. 2012;178:38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Periasamy M. Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem. 2013;288:6881–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Toyoshima C. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta. 2009;1793:941–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000;405:647–55.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Winther AM, Bublitz M, Karlsen JL, Møller JV, Hansen JB, Nissen P, Buch-Pedersen MJ. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature. 2013;495:265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Zádor E, Kósa M. The neonatal sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA1b): a neglected pump in scope. Pflugers Arch. 2015;467:1395–401.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhao Y, Ogawa H, Yonekura S, Mitsuhashi H, Mitsuhashi S, Nishino I, et al. Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta. 2015;1852:2042–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Biochemistry, Faculty of MedicineUniversity of SzegedSzegedHungary