Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RhoA

  • Jose L. Orgaz
  • Victoria Sanz-Moreno
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101793

Synonyms

Historical Background

RhoA was identified as a homolog of small GTPase Ras in a study using a cDNA library from mollusk Aplysia, hence its first name Aplysia Ras-related Homolog (ARH) 12 (Madaule and Axel 1985). RhoA, along with very related RhoB and RhoC, constitute the Rho subfamily of GTPases within the superfamily of Ras-related small GTPases and are found in all eukaryotic cells (Jaffe and Hall 2005). RhoA gene is located on chromosome 1 3p21.3 and, given that it is longer and contains more exons and introns, has been suggested to be the ancestor of both RhoC and RhoB (Wheeler and Ridley 2004), which evolved as duplication ( RhoC) or reverse transcription ( RhoB) from RhoA (Boureux et al. 2007; Wheeler and Ridley 2004). In line with this hypothesis, orthologs of RhoA, but not RhoC or RhoB, are found in nonvertebrates (Boureux et al. 2007). At the protein level, RhoA and RhoC are around 90%...
This is a preview of subscription content, log in to check access.

References

  1. Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol. 2007;24:203–16.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays. 2007;29:356–70.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Cai A, Zhou Y, Li L. Rho-GTPase and atherosclerosis: pleiotropic effects of statins. J Am Heart Assoc. 2015;4. pii: e002113.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cantelli G, Orgaz JL, Rodriguez-Hernandez I, Karagiannis P, Maiques O, Matias-Guiu X, Nestle FO, Marti RM, Karagiannis SN, Sanz-Moreno V. TGF-beta-induced transcription sustains amoeboid melanoma migration and dissemination. Curr Biol. 2015;25:2899–914.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, Wu J, Nakayama KI, Kang HY, Huang HY, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12:457–67.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269–309.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cortes JR, Palomero T. The curious origins of angioimmunoblastic T-cell lymphoma. Curr Opin Hematol. 2016;23:434–43.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Croft DR, Olson MF. Transcriptional regulation of Rho GTPase signaling. Transcription. 2011;2:211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem. 2016;59:2269–300.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol. 2003;15:590–7.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17:496–510.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.PubMedCentralCrossRefGoogle Scholar
  16. Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem. 1999;68:459–86.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, Yamamoto S, Tatsuno K, Katoh H, Watanabe Y, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol. 1993;120:1187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kumper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jorgensen C, Guichard S, Marshall CJ. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife. 2016;5:e12994.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Madaule P, Axel R. A novel ras-related gene family. Cell. 1985;41:31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Mardakheh FK, Self A, Marshall CJ. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129(24):4466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol. 2012;8:165–77.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329–42.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Mizuarai S, Yamanaka K, Kotani H. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res. 2006;66:6319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28:65–76.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA. 1995;92:10629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ohgushi M, Minaguchi M, Sasai Y. Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell. 2015;17:448–61.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269:1270–2.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Orgaz JL, Herraiz C, Sanz-Moreno V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases. 2014a;5:e29019.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, Albrengues J, Nestle FO, Ridley AJ, Gaggioli C, et al. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun. 2014b;5:4255.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, Carpenter Z, Abate F, Allegretta M, Haydu JE, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol. 2017;11(1):5–27. Epub 2016 Dec 9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol. 2017;241(2):123–39. Epub 2016 Nov 11.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006;440:1069–72.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rajakyla EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases. 2014;5:e27539.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16:522–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res. 2016;5. pii: F1000.CrossRefGoogle Scholar
  40. Sadok A, Marshall CJ. Rho GTPases: masters of cell migration. Small GTPases. 2014;5:e29710.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, Marshall CJ. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272–84.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7:737–49.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:133–42.CrossRefGoogle Scholar
  44. Sahai E, Alberts AS, Treisman R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 1998;17:1350–61.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, Muto H, Tsuyama N, Sato-Otsubo A, Okuno Y, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Feral CC, Cook M, et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20:229–45.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Schaefer A, Reinhard NR, Hordijk PL. Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases. 2014;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92:303–15.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301:43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, Kim SC, Lee B, Rho K, Lee JE, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases. 2014;5:e28997.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK