Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Matrix Metalloproteinase-2

  • Brandon Y. H. Chan
  • Andrej Roczkowsky
  • Ramses Ilarraza
  • Richard Schulz
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101708

Synonyms

Historical Background

Matrix metalloproteinase-2 (MMP-2), previously named 72 kDa type IV collagenase or gelatinase A, belongs to the MMP family of calcium and zinc-dependent endopeptidases. MMPs were originally considered to be secreted proteases which play a major role in degrading extracellular matrix (ECM) proteins. In addition to its canonical role in ECM remodelling, MMP-2 has many nonmatrix extracellular and intracellular substrates (Schulz 2007; Spinale 2007). The list of identified MMP-2 substrates continues to grow and includes sarcomeric proteins, membrane receptors, cytokines, and growth factors. Consequently, MMP-2 regulates a vast range of physiological processes, from angiogenesis to wound healing and tissue remodeling. However, aberrant activation of MMP-2 contributes to many pathophysiological conditions, including inflammation, cancer metastasis, and cardiovascular diseases, making it a target of interest for therapeutic...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We thank Dawne Colwell for her help with graphics. Research in the Schulz lab is supported by the Canadian Institutes of Health Research (FDN 143299) and the Heart and Stroke Foundation of Canada. Brandon Chan received a WCHRI graduate studentship award which is funded by the support of the Stollery Children’s Hospital Foundation through the Women and Children’s Health Research Institute.

References

  1. Ali MA, Chow AK, Kandasamy AD, Fan X, West LJ, Crawford BD, et al. Mechanisms of cytosolic targeting of matrix metalloproteinase-2. J Cell Physiol. 2012;227:3397–404.  https://doi.org/10.1002/jcp.24040.CrossRefPubMedGoogle Scholar
  2. Bergman MR, Cheng S, Honbo N, Piacentini L, Karliner JS, Lovett DH. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem J. 2003;369:485–96.  https://doi.org/10.1042/BJ20020707.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buchholz B, Perez V, Siachoque N, Miksztowicz V, Berg G, Rodríguez M, et al. Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2014;307:H88–96.  https://doi.org/10.1152/ajpheart.00242.2013.-Dystrophin.CrossRefPubMedGoogle Scholar
  4. Cerisano G, Buonamici P, Valenti R, Sciagrà R, Raspanti S, Santini A, et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J. 2014;35:184–91.  https://doi.org/10.1093/eurheartj/eht420.CrossRefPubMedGoogle Scholar
  5. Chow AK, Cena J, El-Yazbi AF, Crawford BD, Holt A, Cho WJ, et al. Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart. J Mol Cell Cardiol. 2007;42:896–901.  https://doi.org/10.1016/j.yjmcc.2007.01.008.CrossRefPubMedGoogle Scholar
  6. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, et al. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988;263:6579–87.PubMedGoogle Scholar
  7. Court FA, Zambroni D, Pavoni E, Colombelli C, Baragli C, Figlia G, et al. MMP2-9 cleavage of dystroglycan alters the size and molecular composition of Schwann cell domains. J Neurosci. 2011;31:12208–17.  https://doi.org/10.1523/JNEUROSCI.0141-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J, et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol. 2007;27:8454–65.  https://doi.org/10.1128/MCB.00821-07.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Libby P. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann NY Acad Sci. 1995;748:501–7.CrossRefPubMedGoogle Scholar
  10. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–8.CrossRefPubMedGoogle Scholar
  11. Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA. 1962;48:1014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hughes BG, Fan X, Cho WJ, Schulz R. MMP-2 is localized to the mitochondria-associated membrane of the heart. Am J Physiol Heart Circ Physiol. 2014;306:H764–H70.  https://doi.org/10.1152/ajpheart.00909.2013.-Matrix.CrossRefPubMedGoogle Scholar
  13. Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol. 2014;109:424.  https://doi.org/10.1007/s00395-014-0424-y.CrossRefPubMedGoogle Scholar
  14. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, et al. Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem. 1996;271:14657–60.CrossRefPubMedGoogle Scholar
  15. Jacob-Ferreira AL, Kondo MY, Baral PK, James MN, Holt A, Fan X, et al. Phosphorylation status of 72 kDa MMP-2 determines its structure and activity in response to peroxynitrite. PLoS One. 2013;8:e71794.  https://doi.org/10.1371/journal.pone.0071794.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest. 2008;118:1367–79.  https://doi.org/10.1172/JCI33775.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 2004;18:690–2.CrossRefPubMedGoogle Scholar
  18. Lalu MM, Csonka C, Giricz Z, Csont T, Schulz R, Ferdinandy P. Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochem Biophys Res Commun. 2002;296:937–41.CrossRefPubMedGoogle Scholar
  19. Liotta LA, Abe S, Robey PG, Martin GR. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci USA. 1979;76:2268–72.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, et al. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One. 2012;7:e34177.  https://doi.org/10.1371/journal.pone.0034177.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, et al. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990;194:721–30.CrossRefPubMedGoogle Scholar
  22. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem. 2001;276:29596–602.  https://doi.org/10.1074/jbc.M102417200.CrossRefPubMedGoogle Scholar
  23. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:201–12.  https://doi.org/10.1007/s10911-010-9177-x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rodriguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta. 2010;1803:39–54.  https://doi.org/10.1016/j.bbamcr.2009.09.015.CrossRefPubMedGoogle Scholar
  25. Sariahmetoglu M, Crawford BD, Leon H, Sawicka J, Li L, Ballermann BJ, et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J. 2007;21:2486–95.  https://doi.org/10.1096/fj.06-7938com.CrossRefPubMedGoogle Scholar
  26. Sariahmetoglu M, Skrzypiec-Spring M, Youssef N, Jacob-Ferreira AL, Sawicka J, Holmes C, et al. Phosphorylation status of matrix metalloproteinase 2 in myocardial ischaemia-reperfusion injury. Heart. 2012;98:656–62.  https://doi.org/10.1136/heartjnl-2011-301250.CrossRefPubMedGoogle Scholar
  27. Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol. 2007;47:211–42.  https://doi.org/10.1146/annurev.pharmtox.47.120505.105230.CrossRefPubMedGoogle Scholar
  28. Spinale F. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90:520–30.  https://doi.org/10.1161/01.res.0000013290.12884.a3.CrossRefPubMedGoogle Scholar
  29. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.  https://doi.org/10.1152/physrev.00012.2007.CrossRefPubMedGoogle Scholar
  30. Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-Lopez NL, Schulz R. Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol. 2007;43:429–36.  https://doi.org/10.1016/j.yjmcc.2007.07.055.CrossRefPubMedGoogle Scholar
  31. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA. 1990;87:5578–82.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, Leon H, et al. Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol. 2009;77:826–34.  https://doi.org/10.1016/j.bcp.2008.11.004.CrossRefPubMedGoogle Scholar
  33. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J. Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation. 2003;108:1487–92.  https://doi.org/10.1161/01.CIR.0000089090.05757.34.CrossRefPubMedGoogle Scholar
  34. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.  https://doi.org/10.1161/01.RES.0000070112.80711.3D.CrossRefPubMedGoogle Scholar
  35. Wang W, Schulze CJ, Suarez-Pinzon W, Dyck J, Sawicki S, Schulz R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106:1543–9.  https://doi.org/10.1161/01.cir.0000028818.33488.7b.CrossRefPubMedGoogle Scholar
  36. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–76.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Brandon Y. H. Chan
    • 1
    • 2
  • Andrej Roczkowsky
    • 1
    • 2
  • Ramses Ilarraza
    • 1
    • 2
  • Richard Schulz
    • 1
    • 2
  1. 1.Departments of Pediatrics and PharmacologyMazankowski Alberta Heart Institute, Cardiovascular Research Centre, University of AlbertaEdmontonCanada
  2. 2.462 Heritage Medical Research CentreUniversity of AlbertaEdmontonCanada