Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Kv5, Kv6, Kv8, and Kv9

  • Elke BocksteinsEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101682


Electrically silent voltage-gated K+(Kv) subunits:  Kv5.1, IK8, kH1, KCNF1;  Kv6.1, K13, kH2, KCNG1;  Kv6.2, KCNG2;  Kv6.3, Kv10.1, KCNG3;  Kv6.4, Kv6.3, KCNG4;  Kv8.1, Kv2.3, KCNV1;  Kv8.2, Kv11.1, KCNV2; Kv9.1, KCNS1;  Kv9.2, KCNS2; Kv9.3, KCNS3

Historical Background

The first members of the electrically silent voltage-gated K + (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, often referred to as KvS) were cloned in 1992. In contrast to the members of the previously cloned Kv1 (Shaker), Kv2 (Shab), Kv3 (Shaw), and Kv4 (Shal) subfamilies, the newly cloned Kv5.1 and Kv6.1 subunits did not produce voltage-dependent currents when expressed in heterologous expression systems (Drewe et al. 1992). Four years later, Kv8.1 was cloned and the effect of coexpressing Kv8.1 with Kv1–Kv4 subunits was examined, revealing that Kv8.1 affected Kv2 and Kv3 currents (Hugnot et al. 1996). This finding suggested that Kv8.1 interacts with other Kv subunits which was confirmed in the case of Kv8.1 and...
This is a preview of subscription content, log in to check access.


  1. Bocksteins E. Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol. 2016;147:105–25.  https://doi.org/10.1085/jgp.201511507.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bocksteins E, Snyders DJ. Electrically silent Kv subunits: their molecular and functional characteristics. Physiology (Bethesda). 2012;27:73–84.  https://doi.org/10.1152/physiol.00023.2011.CrossRefGoogle Scholar
  3. Bocksteins E, Mayeur E, van Tilborg A, Regnier G, Timmermans JP, Snyders DJ. The subfamily-specific interaction between Kv2.1 and Kv6.4 subunits is determined by interactions between the N- and C-termini. PLoS One. 2014;9:1–7.CrossRefGoogle Scholar
  4. Castellano A, Chiara MD, Mellstrom B, Molina A, Monje F, Naranjo JR, et al. Identification and functional characterization of a K+ channel alpha-subunit with regulatory properties specific to brain. J Neurosci. 1997;17:4652–61.PubMedPubMedCentralCrossRefGoogle Scholar
  5. David JP, Stas JI, Schmitt N, Bocksteins E. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels. Sci Rep. 2015;5:12813.  https://doi.org/10.1038/srep12813.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Drewe JA, Verma S, Frech G, Joho RH. Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J Neurosci. 1992;12:538–48.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473–508.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hille B. Ion channels of excitable membranes. 3rd ed. Sunderland: Sinauer; 2001.Google Scholar
  9. Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J, Heurteaux C, et al. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 1996;15:3322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Kerschensteiner D, Soto F, Stocker M. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier {alpha}-subunits. Proc Natl Acad Sci USA. 2005;102:6160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Li M, Jan YN, Jan LY. Specification of subunit assembly by the hydrophilic amino- terminal domain of the Shaker potassium channel. Science. 1992;257:1225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Long SB, Campbell EB, MacKinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309:897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ. Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha -subunits identified in the human genome. Proc Natl Acad Sci USA. 2002;99:7986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Salinas M, de Weille J, Guillemare E, Lazdunski M, Hugnot JP. Modes of regulation of shab K+ channel activity by the Kv8.1 subunit. J Biol Chem. 1997;272:8774–80.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Tu L, Deutsch C. Evidence for dimerization of dimers in K+ channel assembly. Biophys J. 1999;76:2004–17.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of AntwerpWilrijk, AntwerpBelgium