Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Saak V. OvsepianEmail author
  • Conny Kopp-Scheinpflug
  • Valerie B. O’Leary
  • J. Oliver DollyEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101677


Historical Background

The discovery of the voltage-dependent potassium conductance by Hodgkin and Huxley (Hodgkin and Huxley 1953) stimulated series of biophysical and molecular biological studies, which led to cloning and identification of the voltage-gated K+ channels with their characterization. The pioneering research by Jan et al. (1977) showing that the Shaker mutant phenotype in drosophila can be induced in wild type by the potassium channel blocker 4-AP was a first step towards isolation of KV1 channel proteins. Cloning of the Drosophila Shaker channels (Papazian et al. 1987; Tempel et al. 1987) was followed by purification of the mammalian ortholog Kv1.1, revealing very high degree of their conservation (Tempel et al. 1988). It was subsequently shown that the highly conserved...

This is a preview of subscription content, log in to check access.


  1. Bagchi B, Al-Sabi A, Kaza S, Scholz D, O’Leary VB, Dolly JO, et al. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination. PLoS One. 2014;9:e87736.  https://doi.org/10.1371/journal.pone.0087736.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol. 2007;98:1501–25.  https://doi.org/10.1152/jn.00640.2006.CrossRefPubMedGoogle Scholar
  3. Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8:136–40.  https://doi.org/10.1038/ng1094-136.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Covarrubias M, Wei AA, Salkoff L. Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron. 1991;7:763–73.CrossRefPubMedGoogle Scholar
  5. Dodson PD, Barker MC, Forsythe ID. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci. 2002;22:6953–61.CrossRefPubMedGoogle Scholar
  6. Dodson PD, Billups B, Rusznak Z, Szucs G, Barker MC, Forsythe ID. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol. 2003;550:27–33.  https://doi.org/10.1113/jphysiol.2003.046250.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dolly JO, Parcej DN. Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr. 1996;28:231–53.CrossRefPubMedGoogle Scholar
  8. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473–508.  https://doi.org/10.1124/pr.57.4.10.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Hodgkin AL, Huxley AF. Movement of radioactive potassium and membrane current in a giant axon. J Physiol. 1953;121:403–14.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Imbrici P, D’Adamo MC, Grottesi A, Biscarini A, Pessia M. Episodic ataxia type 1 mutations affect fast inactivation of K+ channels by a reduction in either subunit surface expression or affinity for inactivation domain. Am J Physiol Cell Physiol. 2011;300:C1314–22.  https://doi.org/10.1152/ajpcell.00456.2010.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Jan LY, Jan YN. Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol. 2012;590:2591–9.  https://doi.org/10.1113/jphysiol.2011.224212.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jan YN, Jan LY, Dennis MJ. Two mutations of synaptic transmission in Drosophila. Proc R Soc London, Ser B. 1977;198:87–108.CrossRefGoogle Scholar
  14. Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rubsamen R. Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo. J Neurosci. 2003;23:9199–207.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kopp-Scheinpflug C, Tempel BL. Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res. 2015;330:213–20.  https://doi.org/10.1016/j.heares.2015.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kullmann DM, Rea R, Spauschus A, Jouvenceau A. The inherited episodic ataxias: how well do we understand the disease mechanisms? Neuroscientist. 2001;7:80–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Li D, Takimoto K, Levitan ES. Surface expression of Kv1 channels is governed by a C-terminal motif. J Biol Chem. 2000;275:11597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Lorincz A, Nusser Z. Cell type dependent molecular composition of the axon initial segment. J Neurosci. 2008;28(53):14329–40.PubMedPubMedCentralCrossRefGoogle Scholar
  19. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998;280:106–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Manganas LN, Trimmer JS. Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem. 2000;275:29685–93.  https://doi.org/10.1074/jbc.M005010200.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Manganas LN, Wang Q, Scannevin RH, Antonucci DE, Rhodes KJ, Trimmer JS. Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci U S A. 2001;98:14055–9.  https://doi.org/10.1073/pnas.241403898.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Monaghan MM, Trimmer JS, Rhodes KJ. Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. J Neurosci. 2001;21:5973–83.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ovsepian SV, LeBerre M, Steuber V, O’Leary VB, Leibold C, Oliver DJ. Distinctive role of KV1.1 subunit in the biology and functions of low threshold K(+) channels with implications for neurological disease. Pharmacol Ther. 2016;159:93–101.  https://doi.org/10.1016/j.pharmthera.2016.01.005.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Ovsepian SV, Steuber V, Le Berre M, O’Hara L, O’Leary VB, Dolly JO. A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets. J Physiol. 2013;591:1771–91.  https://doi.org/10.1113/jphysiol.2012.249706.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 1987;237:749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rhodes KJ, Monaghan MM, Barrezueta NX, Nawoschik S, Bekele-Arcuri Z, Matos MF, et al. Voltage-gated K+ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain. J Neurosci. 1996;16:4846–60.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Rhodes KJ, Strassle BW, Monaghan MM, Bekele-Arcuri Z, Matos MF, Trimmer JS. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci. 1997;17:8246–58.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Robbins CA, Tempel BL. Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia. 2012;53 Suppl 1:134–141.  https://doi.org/10.1111/j.1528-1167.2012.03484.x.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Scott VE, Muniz ZM, Sewing S, Lichtinghagen R, Parcej DN, Pongs O, et al. Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain. Biochemistry. 1994;33:1617–23.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Sheng M, Tsaur ML, Jan YN, Jan LY. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci. 1994;14:2408–17.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Sheng M, Tsaur ML, Jan YN, Jan LY. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron. 1992;9:271–84.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron. 1996;16:843–52.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Sokolov MV, Shamotienko O, Dhochartaigh SN, Sack JT, Dolly JO. Concatemers of brain Kv1 channel alpha subunits that give similar K+ currents yield pharmacologically distinguishable heteromers. Neuropharmacology. 2007;53:272–82.  https://doi.org/10.1016/j.neuropharm.2007.05.008.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Tempel BL, Jan YN, Jan LY. Cloning of a probable potassium channel gene from mouse brain. Nature. 1988;332:837–9.  https://doi.org/10.1038/332837a0.CrossRefPubMedCentralPubMedGoogle Scholar
  35. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 1987;237:770–5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015;85:238–56.  https://doi.org/10.1016/j.neuron.2014.12.042.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Trimmer JS, Rhodes KJ. Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol. 2004;66:477–519.  https://doi.org/10.1146/annurev.physiol.66.032102.113328.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88:1407–47.  https://doi.org/10.1152/physrev.00002.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci. 1995;7:2189–205.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 1993;365:75–9.  https://doi.org/10.1038/365075a0.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Biological and Medical Imaging, Helmholtz Zentrum MunichGerman Research Center for Environmental HealthNeuherbergGermany
  2. 2.Munich School of BioengineeringTechnical University MunichMunichGermany
  3. 3.International Centre for NeurotherapeuticsDublin City UniversityDublinIreland
  4. 4.Division of Neurobiology, Department of Biology IIPlanegg-MartinsriedGermany
  5. 5.Institute of Radiation Biology, Helmholtz Zentrum MunichGerman Research Center for Environmental HealthNeuherbergGermany