Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

HLA Class I Histocompatibility Antigen, Alpha Chain E

  • Alexander A. Celik
  • Rainer Blasczyk
  • Christina Bade-DödingEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101650


Historical Background

Historically, the gene cluster on chromosome 6 that harbors the human leukocyte antigen (HLA) system was termed major histocompatibility complex (MHC), because their discovery was linked to experiments regarding tissue transplantations. It became later apparent that the HLA system is comprised of several molecule classes of which the HLA class I and HLA class II molecules are surface-expressed glycoproteins that present peptides of self or pathogenic origin to different T cell subtypes. This procedure termed MHC restriction sheds new light on T cell–mediated immunity and also elucidates the obstacle of organ rejection. The extensive influence of this...

This is a preview of subscription content, log in to check access.


  1. Allard M, Oger R, Vignard V, Percier JM, Fregni G, Perier A, et al. Serum soluble HLA-E in melanoma: a new potential immune-related marker in cancer. PLoS One. 2011;6:e21118.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987;329:506–12.PubMedCrossRefGoogle Scholar
  3. Braud V, Jones EY, McMichael A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol. 1997;27:1164–9.PubMedCrossRefGoogle Scholar
  4. Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998a;391:795–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Braud VM, Allan DS, Wilson D, McMichael AJ. TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol. 1998b;8:1–10.PubMedCrossRefGoogle Scholar
  6. Celik AA, Kraemer T, Huyton T, Blasczyk R, Bade-Doding C. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch. Immunogenetics. 2015;68:29–41.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Durrenberger PF, Webb LV, Sim MJ, Nicholas RS, Altmann DM, Boyton RJ. Increased HLA-E expression in white matter lesions in multiple sclerosis. Immunology. 2012;137:317–25.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Heatley SL, Pietra G, Lin J, Widjaja JM, Harpur CM, Lester S, et al. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J Biol Chem. 2013;288:8679–90.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jackson SE, Mason GM, Wills MR. Human cytomegalovirus immunity and immune evasion. Virus Res. 2011;157:151–60.PubMedCrossRefGoogle Scholar
  10. Jiang H, Canfield SM, Gallagher MP, Jiang HH, Jiang Y, Zheng Z, et al. HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J Clin Invest. 2010;120:3641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Joosten SA, van Meijgaarden KE, van Weeren PC, Kazi F, Geluk A, Savage ND, et al. Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog. 2010;6:e1000782.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kaiser BK, Barahmand-Pour F, Paulsene W, Medley S, Geraghty DE, Strong RK. Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics. J Immunol. 2005;174:2878–84.PubMedCrossRefGoogle Scholar
  13. Koller BH, Geraghty DE, Shimizu Y, DeMars R, Orr HT. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol. 1988;141:897–904.PubMedGoogle Scholar
  14. Kraemer T, Celik AA, Huyton T, Kunze-Schumacher H, Blasczyk R, Bade-Doding C. HLA-E: presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int. 2015;2015:346714.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Lepin EJ, Bastin JM, Allan DS, Roncador G, Braud VM, Mason DY, et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur J Immunol. 2000;30:3552–61.PubMedCrossRefGoogle Scholar
  16. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, Soderstrom K. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med. 2002;196:1403–14.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Morandi F, Cangemi G, Barco S, Amoroso L, Giuliano M, Gigliotti AR, et al. Plasma levels of soluble HLA-E and HLA-F at diagnosis may predict overall survival of neuroblastoma patients. Biomed Res Int. 2013;2013:956878.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, Rouas-Freiss N, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005;105:4135–42.PubMedCrossRefGoogle Scholar
  19. Petrie EJ, Clements CS, Lin J, Sullivan LC, Johnson D, Huyton T, et al. CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. J Exp Med. 2008;205:725–35.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol. 1991;219:277–319.PubMedCrossRefGoogle Scholar
  21. Stevens J, Joly E, Trowsdale J, Butcher GW. Peptide binding characteristics of the non-classical class Ib MHC molecule HLA-E assessed by a recombinant random peptide approach. BMC Immunol. 2001;2:5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Strong RK, Holmes MA, Li P, Braun L, Lee N, Geraghty DE. HLA-E allelic variants. Correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J Biol Chem. 2003;278:5082–90.PubMedCrossRefGoogle Scholar
  23. Talebian Yazdi M, van Riet S, van Schadewijk A, Fiocco M, van Hall T, Taube C, et al. The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma. Oncotarget. 2016;7:3477–88.PubMedGoogle Scholar
  24. Ulbrecht M, Modrow S, Srivastava R, Peterson PA, Weiss EH. Interaction of HLA-E with peptides and the peptide transporter in vitro: implications for its function in antigen presentation. J Immunol. 1998;160:4375–85.PubMedGoogle Scholar
  25. Wang EC, McSharry B, Retiere C, Tomasec P, Williams S, Borysiewicz LK, et al. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci USA. 2002;99:7570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Wooden SL, Kalb SR, Cotter RJ, Soloski MJ. Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis. J Immunol. 2005;175:1383–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alexander A. Celik
    • 1
  • Rainer Blasczyk
    • 1
  • Christina Bade-Döding
    • 1
    Email author
  1. 1.Institute for Transfusion MedicineHannover Medical SchoolHannoverGermany