Skip to main content

Histone H3

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bannister AJ, Kouzarides T. Reversing histone methylation. Nature. 2005;436:1103–6.

    Article  PubMed  CAS  Google Scholar 

  • Britton LM, Newhart A, Bhanu NV, Sridharan R, Gonzales-Cope M, Plath K, et al. Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics. 2013;8:1101–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007;6:812–9.

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol. 2014;10:365–70.

    Article  PubMed  CAS  Google Scholar 

  • Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, Sifers RN. β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem. 2012;287:12195–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Giménez JL, Òlaso G, Hake SB, Bönisch C, Wiedemann SM, Markovic J, et al. Histone H3. glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure. Antioxid Redox Signal. 2013;19:1305–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinchcliffe EH, Day CA, Karanjeet KB, Fadness S, Langfald A, Vaughan KT, Dong Z. Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation. Nat Cell Biol. 2016;18:668–75.

    Article  PubMed  CAS  Google Scholar 

  • Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Article  PubMed  Google Scholar 

  • Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci USA. 2007;104:60–5.

    Article  PubMed  CAS  Google Scholar 

  • Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma. 2015;124:177–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kothapalli N, Camporeale G, Kueh A, Chew YC, Oommen AM, Griffin JB, Zempleni J. Biological functions of biotinylated histones. J Nutr Biochem. 2005;16:446–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Noh KM, Soshnev AA, Allis CD. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet. 2014;15:259–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monks TJ, Xie R, Tikoo K, Lau SS. Ros-induced histone modifications and their role in cell survival and cell death. Drug Metab Rev. 2006;38:755–67.

    Article  PubMed  CAS  Google Scholar 

  • Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015;58:203–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998;12:599–606.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22:383–94.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, et al. Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics. 2012;11:100–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol Cell. 2016;62:194–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001;15:2343–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy T. Y. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, YM., Yao, Y., Lau, A.T.Y. (2018). Histone H3. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101644

Download citation

Publish with us

Policies and ethics