Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Fernanda M. Lopes
  • Juliano Cé Coelho
  • Matheus H. Leal
  • Richard B. Parsons
  • Fabio KlamtEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101634


Historical Background

Cofilin-1 is a major mediator of cytoskeleton dynamics as it regulates the remodeling of actin filaments (Carlier et al. 1999). It is ubiquitously expressed in all eukaryotes and has a broad tissue distribution. In mammals, for instance, it can be found in the brain, gastrointestinal tract, and lymphocytes. It was originally purified from avian and porcine brain as a 15–21 kDa globular protein with a core consisting of four or five beta-sheets surrounded by four or five alpha-helices. Its amino acid sequence and structure is highly conserved from yeast to human. In vivo and in vitro studies show that cofilin-1 protein can exist as both a monomer and oligomer, due mainly to the presence of four cysteine residues (Cys 39, Cys 80, Cys 139, and Cys 147) which are potential targets for oxidation (Fig. 1). This process can lead to disulfide bond formation, causing conformational changes in cofilin-1...
This is a preview of subscription content, log in to check access.


  1. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998;393(6687):805–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9655397CrossRefPubMedGoogle Scholar
  2. Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton (Hoboken). 2016;73(9):477–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26873625PubMedPubMedCentralCrossRefGoogle Scholar
  3. Becker M, De Bastiani MA, Müller CB, Markoski MM, Castro MA, Klamt F. High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumour Biol. 2014;35(2):1233–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24018823PubMedCrossRefGoogle Scholar
  4. Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. NIH Public Access; 2010;20(4):187–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20133134PubMedPubMedCentralCrossRefGoogle Scholar
  5. Carlier MF, Ressad F, Pantaloni D. Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem. 1999;274(48):33827–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10567336PubMedCrossRefGoogle Scholar
  6. Castro MAA, Dal-Pizzol F, Zdanov S, Soares M, Müller CB, Lopes FM, et al. CFL1 expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer. 2010;116(15):3645–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20564088PubMedCrossRefGoogle Scholar
  7. Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol. 2009;69(12):761–79. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2845293&tool=pmcentrez&rendertype=abstractPubMedPubMedCentralCrossRefGoogle Scholar
  8. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, et al. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell. 1996;86(1):59–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8689688PubMedCrossRefGoogle Scholar
  9. Heredia L, Helguera P, de Olmos S, Kedikian G, Solá Vigo F, LaFerla F, et al. Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci. 2006;26(24):6533–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16775141PubMedCrossRefGoogle Scholar
  10. Huang X, Sun D, Pan Q, Wen W, Chen Y, Xin X, Huang M, Ding J, Geng M. JG6, a novel marine-derived oligosaccharide, suppresses breast cancer metastasis via binding to cofilin. Oncotarget. 2014;5(11):3568–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25003327
  11. Klamt F, Zdanov S, Levine RL, Pariser A, Zhang Y, Zhang B, et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat Cell Biol. 2009;11(10):1241–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3393095&tool=pmcentrez&rendertype=abstractPubMedPubMedCentralCrossRefGoogle Scholar
  12. Klemke M, Wabnitz GH, Funke F, Funk B, Kirchgessner H, Samstag Y. Oxidation of cofilin mediates T cell hyporesponsiveness under oxidative stress conditions. Immunity. 2008;29(3):404–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18771940PubMedCrossRefGoogle Scholar
  13. Lee Y-J, Sheu T-J, Keng PC. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin. Biochem Biophys Res Commun. 2005;335(2):286–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16061204PubMedCrossRefGoogle Scholar
  14. Li M, Yin J, Mao N, Pan L. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep. 2013;(1):58–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23064469PubMedCrossRefGoogle Scholar
  15. Müller CB, de Barros RL, Castro MA, Lopes FM, Meurer RT, Roehe A, et al. Validation of cofilin-1 as a biomarker in non-small cell lung cancer: application of quantitative method in a retrospective cohort. J Cancer Res Clin Oncol. 2011;137(9):1309–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21735353PubMedCrossRefGoogle Scholar
  16. Schönhofen P, de Medeiros LM, Catain CP, Bristot IJ, Klamt F. Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem. 2014;14(5):393–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24813767PubMedCrossRefGoogle Scholar
  17. Wang Y, Shibasaki F, Mizuno K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 2005;280(13):12683–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15671020PubMedCrossRefGoogle Scholar
  18. Wang W., Eddy R., Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer. 2007;(6):429–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17522712PubMedPubMedCentralCrossRefGoogle Scholar
  19. Wei R, Zhang Y, Shen L, Jiang W, Li C, Zhong M, et al. Comparative proteomic and radiobiological analyses in human lung adenocarcinoma cells. Mol Cell Biochem. 2012;359(1–2):151–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21822689PubMedCrossRefGoogle Scholar
  20. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393(6687):809–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9655398CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fernanda M. Lopes
    • 1
    • 2
  • Juliano Cé Coelho
    • 1
  • Matheus H. Leal
    • 1
  • Richard B. Parsons
    • 2
  • Fabio Klamt
    • 1
    Email author
  1. 1.Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Science (ICBS)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Institute of Pharmaceutical ScienceKings’s College LondonLondonUK