Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Tryptophan Hydroxylase 2

  • Yukino Nawa
  • Luca Colucci-D’Amato
  • Hiroaki Matsui
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101618

Synonyms

Historic Background

Historically, the monoamine serotonin (5-hydroxytryptamine, 5-HT) was first discovered in the gastrointestinal (GI) tract as a contractile substance, enteramine. Subsequently, 5-HT was discovered in blood (serum) as a potent vasoconstrictive substance (enteramine was shown to be the same substance as 5-HT), in the central nervous system (CNS) as a neurotransmitter, and in the pineal gland as an intermediate precursor in the synthesis of melatonin, the neurohormone involving in the regulation of the circadian rhythm (Amireault et al. 2013).

About 95% of the body’s 5-HT resides in the GI tract, primarily (90%) in a subtype of enteroendocrine cells distributed throughout in the GI tract called enterochromaffin (EC) cells and 10% in serotonergic neurons of myenteric plexus. 5-HT originating from the GI tract acts locally or is released in the blood stream...

This is a preview of subscription content, log in to check access.

References

  1. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011;12:141–51.  https://doi.org/10.1038/nrm3072.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amireault P, Sibon D, Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the exsistence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci. 2013;4:64–71.  https://doi.org/10.1021/cn300154j.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol. 2005;15:500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bockaert J, Claeysen S, Dumuis A, Martin P. Classification and signaling characteristics of 5-HT receptors. In: Muller CP, Jacobs BL, editors. Handbook of behavioral neurobiology of serotonin. San Diego: Academic Press; 2010. p. 103–21.CrossRefGoogle Scholar
  5. Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet Part B. 2013;159B:152–71.  https://doi.org/10.1002/ajmg.b.32023.CrossRefGoogle Scholar
  6. Chen GL, Vallender EJ, Miller GM. Functional characterization of the TPH2 5′ regulatory region: untranslated region and polymorphisms modulate gene expression in vitro. Hum Genet. 2008;122:645–57.  https://doi.org/10.1007/s00439-007-0443-y.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D’Amato L. Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity. J Neurochem. 2012;123:963–70.  https://doi.org/10.1111/jnc.12004.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Goswami DB, May WL, Stockmeier CA, Austin MC. Transcriptional expression of serotonergic regulators in laser-captured microdissected dorsal raphe neurons of subjects with major depressive disorder: sex-specific differences. J Neurochem. 2010;112:397–409. doi:10.1111/j.1471- 4159.2009. 06462.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hasegawa H, Nakamura K. Tryptophan hydroxylase and serotonin synthesis regulation. In: Muller CP, Jacobs BL, editors. Handbook of behavioral neurobiology of serotonin. San Diego: Academic Press; 2010. p. 183–202.CrossRefGoogle Scholar
  10. Hiroi R, Handa RJ. Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region. J Neurochem. 2013;127:487–95.  https://doi.org/10.1111/jnc.12401.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jacobsen JPR, Medvedev IO, Carom MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2 Arg439His knockin mouse. Philos Trans R Soc B. 2012;367:2449–59.  https://doi.org/10.1098/rstb.2012.0109.CrossRefGoogle Scholar
  12. Lenicov FR, Lemonde S, Czesak M, Mosher TM, Albert PR. Cell-type specific induction of tryptophan hydroxylase-2 transcription by calcium mobilization. J Neurochem. 2007;103:2047–57.  https://doi.org/10.1111/j.1471-4159.2007.04903.x.CrossRefGoogle Scholar
  13. McKinney JA, Turel B, Winge I, Knappskog PM, Haavik J. Functional properties of missense variants of human tryptophan hydroxylase 2. Hum Mutat. 2009;30:787–94.  https://doi.org/10.1002/humu.20956.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Nasu M, Yada S, Igarashi A, Sutoo D, Akiyama K, Ito M, Yoshida N, Ueda S. Mammalian-specific sequences in pou3f2 contribute to maternal behavior. Genome Biol Evol. 2014;6:1145–56.  https://doi.org/10.1093/gbe/evu072.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ooi L, Wood IC. Chromatin crosstalk in development and disease: lessons from REST. Hum Mutat. 2009;30:787–94.  https://doi.org/10.1038/nrg2100.CrossRefGoogle Scholar
  16. Patel PD, Bochar DA, Turner DL, Meng F, Mueller HM, Pontrello CG. Regulation of tryptophan hydroxylase-2 gene expression by a bipartite RE-1 silencer of transcription/neuron restrictive silencing factor (REST/NRSF) binding motif. J Biol Chem. 2007;282:26717–24.  https://doi.org/10.1074/jbc.M705120200.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Patrick RP, Ames BN. Vitamine D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28:2398–413.  https://doi.org/10.1096/fj.13-246546.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P, Heinz A, Walther DJ, Priller J. Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol Psychiatry. 2007;62:1288–94.  https://doi.org/10.1016/j.biopsych.2007.01.015.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Winge I, McKinney J, Haavik J. Tryptophan hydroxylase. In: JFP D’M, editor. Amino acids in human nutrition and health. Wallingford: CAB International; 2012. p. 150–72.Google Scholar
  20. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66:1673–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Radioisotope Research, St. Marianna University Graduate School of MedicineKawasakiJapan
  2. 2.Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “L. Vanvitelli”CasertaItaly
  3. 3.Department of Molecular and Behavioral NeuroscienceSt. Marianna University Graduate School of MedicineKawasakiJapan
  4. 4.Dipartimento di Scienze della Vita, Seconda Università di NapoliCasertaItaly