Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Eric J. NestlerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101602


Historical Background

ΔFosB is encoded by the FosB gene and shares homology with other Fos family transcription factors, which include c-Fos, FosB, Fra1, and Fra2. All Fos family proteins heterodimerize with Jun family proteins (c-Jun, JunB, or JunD) to form active AP1 (activator protein-1) transcription factors that bind to AP1 sites (consensus sequence: TGAC/GTCA) present in the promoters of certain genes to regulate their transcription. The genes encoding Fos family proteins are termed immediate early genes based on their rapid induction in a cell-type-specific manner in diverse tissues, including neurons in the intact brain, in response to a wide range of acute stimuli. All of these Fos family proteins, however, and their mRNA transcripts are highly unstable, which causes them to return to basal levels within hours of the stimulus. ΔFosB is unique among Fos family proteins in exhibiting a very different induction profile (Hope et al. 1994; Hiroi et al. 1997...
This is a preview of subscription content, log in to check access.


  1. Cates HM, Thibault M, Pfau M, Heller E, Eagle A, Gajewski P, et al. Threonine 149 phosphorylation enhances ΔFosB transcriptional activity to control psychomotor responses to cocaine. J Neurosci. 2014;34:11461–9.  https://doi.org/10.1523/JNEUROSCI.1611-14.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Dietz DM, Kennedy PJ, Sun H, Maze I, Gancarz AM, Vialou V, et al. ΔFosB induction in prefrontal cortex by antipsychotic drugs is associated with negative behavioral outcomes. Neuropsychopharmacology. 2014;39:538–44.  https://doi.org/10.1038/npp.2013.255.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Feyder M, Södersten E, Santini E, Vialou V, LaPlant Q, Watts EL, Spigolon G, et al. A role for mitogen- and stress-activated kinase 1 in L-DOPA-induced dyskinesia and ΔFosB expression. Biol Psychiatry. 2016;79:362–71.  https://doi.org/10.1016/j.biopsych.2014.07.019.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC. ΔFosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci U S A. 2013;110:1923–8.  https://doi.org/10.1073/pnas.1221742110.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17:1720–7.  https://doi.org/10.1038/nn.3871.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Hiroi N, Brown J, Haile C, Ye H, Greenberg ME, Nestler EJ. FosB mutant mice: Loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc Natl Acad Sci USA. 1997;94:10397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron. 1994;13:1235–44.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Jorissen H, Ulery P, Henry L, Gourneni S, Nestler EJ, Rudenko G. Dimerization and DNA-binding properties of the transcription factor deltaFosB. Biochemistry. 2007;46:8360–72.  https://doi.org/10.1021/bi700494v.CrossRefPubMedGoogle Scholar
  9. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron. 2005;48:303–14.  https://doi.org/10.1016/j.neuron.2005.09.023.CrossRefPubMedGoogle Scholar
  10. Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, et al. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33:18381–95.  https://doi.org/10.1523/JNEUROSCI.1875-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Mandelzys A, Gruda MA, Bravo R, Morgan JI. Absence of a persistently elevated 37 kDa fos-related antigen and AP-1-like DNA-binding activity in the brains of kainic acid-treated fosB null mice. J Neurosci. 1997;17:5407–15.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327:213–6.  https://doi.org/10.1126/science.1179438.PubMedPubMedCentralCrossRefGoogle Scholar
  13. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci. 2003;6:1208–15.  https://doi.org/10.1038/nn1143.CrossRefPubMedGoogle Scholar
  14. Muschamp JW, Nemeth CL, Robison AJ, Nestler EJ, Carlezon Jr WA. ΔFosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488. Biol Psychiatry. 2012;71:44–50.  https://doi.org/10.1016/j.biopsych.2011.08.011.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Nestler EJ. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:3245–55.  https://doi.org/10.1098/rstb.2008.0067.CrossRefGoogle Scholar
  16. Nestler EJ. ΔFosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2015;753:66–72.  https://doi.org/10.1016/j.ejphar.2014.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Ohnishi YN, Ohnishi YH, Vialou V, Mouzon E, LaPlant Q, Nishi A, et al. Functional role of the N-terminal domain of ΔFosB in response to stress and drugs of abuse. Neuroscience. 2015;284:165–70.  https://doi.org/10.1016/j.ejphar.2014.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington 3rd HE, Maze I, et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron. 2009;62:335–48.  https://doi.org/10.1016/j.neuron.2009.03.026.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, et al. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci. 2013;33:4295–307.  https://doi.org/10.1523/JNEUROSCI.5192-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med. 2000;6:985–90.  https://doi.org/10.1038/79683.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Vialou V, Robison AJ, Laplant QC, Covington 3rd HE, Dietz DM, Ohnishi YN, et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci. 2010;13:745–52.  https://doi.org/10.1038/nn.2551.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, et al. Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J Neurosci. 2012;32:7577–84.  https://doi.org/10.1523/JNEUROSCI.1381-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Fishberg Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA