Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Phosphoinositide-Specific Phospholipase C (PI-PLC)

  • Hyun-Jun Jang
  • Yong Ryoul Yang
  • Lucio Cocco
  • Sung Ho Ryu
  • Pann-Ghill Suh
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101584

Synonyms

Historical Background

In 1953, Lowell and Mabel Hokin found that stimulation of pancreatic slices by acetylcholine increased the incorporation of 32P into inositol lipids and phosphatidic acid. This phenomenon became known as the “PI effect,” and a comprehensive exploration of the PI effect was later initiated (Hokin and Hokin 1953). It was described that the rapid turnover of membrane phosphoinositides was increased in various tissues and cells in response to a wide range of external stimuli. Richard Rodnight showed the liberation of inositol phosphate from inositol phosphatide in 1956, and it was suggested that stimulated phospholipid metabolism appears to be specific for phosphatidylinositol. In 1959, it was proposed that the hormonal degradation of phosphatidylinositol is mainly hydrolyzed by a PLC-like enzyme into diacylglycerol (DAG)...

This is a preview of subscription content, log in to check access.

References

  1. Abe K, Fuchs H, Boersma A, Hans W, Yu P, Kalaydjiev S, et al. A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase Cgamma2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. Arthritis Rheum. 2011;63:1301–11. doi:10.1002/art.30280.CrossRefPubMedGoogle Scholar
  2. Bai Y, Edamatsu H, Maeda S, Saito H, Suzuki N, Satoh T, et al. Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 2004;64:8808–10. doi:10.1158/0008-5472.CAN-04-3143.CrossRefPubMedGoogle Scholar
  3. Banno Y, Yu A, Nakashima T, Homma Y, Takenawa T, Nozawa Y. Purification and characterization of a cytosolic phosphoinositide-phospholipase C (gamma 2-type) from human platelets. Biochem Biophys Res Commun. 1990;167:396–401.Google Scholar
  4. Bennett CF, Crooke ST. Purification and characterization of a phosphoinositide-specific phospholipase C from guinea pig uterus. Phosphorylation by protein kinase C in vivo. J Biol Chem. 1987;262:13789–97.PubMedGoogle Scholar
  5. Blank JL, Ross AH, Exton JH. Purification and characterization of two G-proteins that activate the beta 1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class. J Biol Chem. 1991;266:18206–16.PubMedGoogle Scholar
  6. Bristol A, Hall SM, Kriz RW, Stahl ML, Fan YS, Byers MG, et al. Phospholipase C-148: chromosomal location and deletion mapping of functional domains. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 2):915–20.Google Scholar
  7. Choi JH, Hong WP, Yun S, Kim HS, Lee JR, Park JB, et al. Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1. Cell Signal. 2005;17:1289–99. doi:10.1016/j.cellsig.2005.01.005.CrossRefPubMedGoogle Scholar
  8. Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction. 2002;124:611–23.Google Scholar
  9. Dawson RM. Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas. Biochim Biophys Acta. 1959;33:68–77.Google Scholar
  10. Essen LO, Perisic O, Cheung R, Katan M, Williams RL. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996;380:595–602. doi:10.1038/380595a0.CrossRefPubMedGoogle Scholar
  11. Fain JN, Berridge MJ. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary-gland. Biochem J. 1979;178:45–58.PubMedPubMedCentralGoogle Scholar
  12. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 1995;83:1037–46.Google Scholar
  13. Follo MY, Finelli C, Clissa C, Mongiorgi S, Bosi C, Martinelli G, et al. Phosphoinositide-phospholipase C beta1 mono-allelic deletion is associated with myelodysplastic syndromes evolution into acute myeloid leukemia. J Clin Oncol. 2009;27:782–90. doi:10.1200/JCO.2008.19.3748.CrossRefPubMedGoogle Scholar
  14. Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, et al. Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol. 2003;161:79–88. doi:10.1083/jcb.200210057.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405. doi:10.1038/ng1918.CrossRefPubMedGoogle Scholar
  16. Hofmann SL, Majerus PW. Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands. J Biol Chem. 1982;257:6461–9.PubMedGoogle Scholar
  17. Hokin MR, Hokin LE. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem. 1953;203:967–77.PubMedGoogle Scholar
  18. Horowitz LF, Hirdes W, Suh BC, Hilgemann DW, Mackie K, Hille B. Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol. 2005;126:243–62. doi:10.1085/jgp.200509309.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, Suh PG. Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J. 2005;389:181–6. doi:10.1042/BJ20041677.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ilkaeva O, Kinch LN, Paulssen RH, Ross EM. Mutations in the carboxyl-terminal domain of phospholipase C-beta 1 delineate the dimer interface and a potential Galphaq interaction site. J Biol Chem. 2002;277:4294–300. doi:10.1074/jbc.M109612200.CrossRefPubMedGoogle Scholar
  21. Jang HJ, Yang YR, Kim JK, Choi JH, Seo YK, Lee YH, et al. Phospholipase C-gamma1 involved in brain disorders. Adv Biol Regul. 2013;53:51–62. doi:10.1016/j.jbior.2012.09.008.CrossRefPubMedGoogle Scholar
  22. Jhon DY, Lee HH, Park D, Lee CW, Lee KH, Yoo OJ, et al. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J Biol Chem. 1993;268:6654–61.PubMedGoogle Scholar
  23. Ji QS, Winnier GE, Niswender KD, Horstman D, Wisdom R, Magnuson MA, et al. Essential role of the tyrosine kinase substrate phospholipase C-gamma1 in mammalian growth and development. Proc Natl Acad Sci U S A. 1997;94:2999–3003.PubMedPubMedCentralGoogle Scholar
  24. Jiang H, Lyubarsky A, Dodd R, Vardi N, Pugh E, Baylor D, et al. Phospholipase C beta 4 is involved in modulating the visual response in mice. Proc Natl Acad Sci U S A. 1996;93:14598–601.PubMedPubMedCentralGoogle Scholar
  25. Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D. Roles of phospholipase C beta2 in chemoattractant-elicited responses. Proc Natl Acad Sci U S A. 1997;94:7971–5.PubMedPubMedCentralGoogle Scholar
  26. Katan M, Williams RL. Phosphoinositide-specific phospholipase C: structural basis for catalysis and regulatory interactions. Semin Cell Dev Biol. 1997;8:287–96. doi:10.1006/scdb.1997.0150.CrossRefPubMedGoogle Scholar
  27. Kelley GG, Reks SE, Ondrako JM, Smrcka AV. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 2001;20:743–54. doi:10.1093/emboj/20.4.743.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJ. G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner. J Biol Chem. 2006;281:2639–48. doi:10.1074/jbc.M507681200.CrossRefPubMedGoogle Scholar
  29. Kemp P, Hubscher G, Hawthorne JN. A liver phospholipase hydrolysing phosphoinositides. Biochim Biophys Acta. 1959;31:585–6.Google Scholar
  30. Kim MJ, Bahk YY, Min DS, Lee SJ, Ryu SH, Suh PG. Cloning of cDNA encoding rat phospholipase C-beta 4, a new member of the phospholipase C. Biochem Biophys Res Commun. 1993;194:706–12. doi:10.1006/bbrc.1993.1879.CrossRefPubMedGoogle Scholar
  31. Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature. 1997;389:290–3. doi:10.1038/38508.CrossRefPubMedGoogle Scholar
  32. Kim JK, Choi JW, Lim S, Kwon O, Seo JK, Ryu SH, et al. Phospholipase C-eta1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling. Cell Signal. 2011;23:1022–9. doi:10.1016/j.cellsig.2011.01.017.CrossRefPubMedGoogle Scholar
  33. Lee SB, Rhee SG. Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J Biol Chem. 1996;271:25–31.Google Scholar
  34. Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW. A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem. 2001;276:2758–65. doi:10.1074/jbc.M008119200.CrossRefPubMedGoogle Scholar
  35. Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest. 2006;116:2869–79. doi:10.1172/JCI28775.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Margolis B, Rhee SG, Felder S, Mervic M, Lyall R, Levitzki A, et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell. 1989;57:1101–7.Google Scholar
  37. Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L. Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature. 1992;358:242–5. doi:10.1038/358242a0.CrossRefPubMedGoogle Scholar
  38. McOmish CE, Burrows EL, Howard M, Hannan AJ. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus. 2008;18:824–34. doi:10.1002/hipo.20443.CrossRefPubMedGoogle Scholar
  39. Meisenhelder J, Suh PG, Rhee SG, Hunter T. Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell. 1989;57:1109–22.Google Scholar
  40. Michell RH. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975;415:81–47.Google Scholar
  41. Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, Kudo Y, et al. A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J Biol Chem. 2005;280:29128–34. doi:10.1074/jbc.M503817200.CrossRefPubMedGoogle Scholar
  42. Nakamura Y, Fukami K, Yu H, Takenaka K, Kataoka Y, Shirakata Y, et al. Phospholipase Cdelta1 is required for skin stem cell lineage commitment. EMBO J. 2003;22:2981–91. doi:10.1093/emboj/cdg302.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, et al. Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol. 2005;25:10979–88. doi:10.1128/MCB.25.24.10979-10988.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984;308:693–8.Google Scholar
  45. Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, Saunders CM, et al. Role of phospholipase C-zeta domains in Ca2+-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J Biol Chem. 2005;280:31011–8. doi:10.1074/jbc.M500629200.CrossRefPubMedGoogle Scholar
  46. Nomikos M, Elgmati K, Theodoridou M, Georgilis A, Gonzalez-Garcia JR, Nounesis G, et al. Novel regulation of PLCzeta activity via its XY-linker. Biochem J. 2011;438:427–32. doi:10.1042/BJ20110953.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ombrello MJ, Remmers EF, Sun G, Freeman AF, Datta S, Torabi-Parizi P, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med. 2012;366:330–8. doi:10.1056/NEJMoa1102140.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Park D, Jhon DY, Kriz R, Knopf J, Rhee SG. Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J Biol Chem. 1992;267:16048–55.PubMedGoogle Scholar
  49. Philip F, Kadamur G, Silos RG, Woodson J, Ross EM. Synergistic activation of phospholipase C-beta3 by Galpha(q) and Gbetagamma describes a simple two-state coincidence detector. Curr Biol. 2010;20:1327–35. doi:10.1016/j.cub.2010.06.013.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Popovics P, Beswick W, Guild SB, Cramb G, Morgan K, Millar RP, et al. Phospholipase C-eta2 is activated by elevated intracellular Ca(2+) levels. Cell Signal. 2011;23:1777–84. doi:10.1016/j.cellsig.2011.06.012.CrossRefPubMedGoogle Scholar
  51. Prenen H, Smeets D, Mazzone M, Lambrechts D, Sagaert X, Sciot R, et al. Phospholipase C gamma 1 (PLCG1) R707Q mutation is counterselected under targeted therapy in a patient with hepatic angiosarcoma. Oncotarget. 2015;6:36418–25. doi:10.18632/oncotarget.5503.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rhee SG, Suh PG, Ryu SH, Lee SY. Studies of inositol phospholipid-specific phospholipase C. Science. 1989;244:546–50.Google Scholar
  53. Rottbauer W, Just S, Wessels G, Trano N, Most P, Katus HA, et al. VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. Genes Dev. 2005;19:1624–34. doi:10.1101/gad.1319405.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ryu SH, Suh PG, Cho KS, Lee KY, Rhee SG. Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C. Proc Natl Acad Sci U S A. 1987;84:6649–53.PubMedPubMedCentralGoogle Scholar
  55. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–44.PubMedGoogle Scholar
  56. Shibatohge M, Kariya K, Liao Y, CD H, Watari Y, Goshima M, et al. Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J Biol Chem. 1998;273:6218–22.Google Scholar
  57. Smrcka AV, Sternweis PC. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993;268:9667–74.PubMedGoogle Scholar
  58. Song C, CD H, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 2001;276:2752–7. doi:10.1074/jbc.M008324200.CrossRefPubMedGoogle Scholar
  59. Stallings JD, Zeng YX, Narvaez F, Rebecchi MJ. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels. J Biol Chem. 2008;283:13992–4001. doi:10.1074/jbc.M800752200.CrossRefPubMedGoogle Scholar
  60. Stewart AJ, Mukherjee J, Roberts SJ, Lester D, Farquharson C. Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. Int J Mol Med. 2005;15:117–21.PubMedGoogle Scholar
  61. Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983;306:67–9.Google Scholar
  62. Suh PG, Ryu SH, Choi WC, Lee KY, Rhee SG. Monoclonal antibodies to three phospholipase C isozymes from bovine brain. J Biol Chem. 1988a;263:14497–504.PubMedGoogle Scholar
  63. Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG. Cloning and sequence of multiple forms of phospholipase C. Cell. 1988b;54:161–9.Google Scholar
  64. Tadano M, Edamatsu H, Minamisawa S, Yokoyama U, Ishikawa Y, Suzuki N, et al. Congenital semilunar valvulogenesis defect in mice deficient in phospholipase C epsilon. Mol Cell Biol. 2005;25:2191–9. doi:10.1128/MCB.25.6.2191-2199.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Takenawa T, Nagai Y. Purification of phosphatidylinositol-specific phospholipase C from rat liver. J Biol Chem. 1981;256:6769–75.PubMedGoogle Scholar
  66. Taylor SJ, Chae HZ, Rhee SG, Exton JH. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature. 1991;350:516–8. doi:10.1038/350516a0.CrossRefPubMedGoogle Scholar
  67. Thompson W, Dawson RM. The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem J. 1964;91:233–6.PubMedPubMedCentralGoogle Scholar
  68. Timsah Z, Ahmed Z, Lin CC, Melo FA, Stagg LJ, Leonard PG, et al. Competition between Grb2 and Plcgamma1 for FGFR2 regulates basal phospholipase activity and invasion. Nat Struct Mol Biol. 2014;21:180–8. doi:10.1038/nsmb.2752.CrossRefPubMedGoogle Scholar
  69. Vazquez-Manrique RP, Nagy AI, Legg JC, Bales OA, Ly S, Baylis HA. Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans. PLoS Genet. 2008;4:e1000043. doi:10.1371/journal.pgen.1000043.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wahl MI, Nishibe S, Suh PG, Rhee SG, Carpenter G. Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. Proc Natl Acad Sci U S A. 1989;86:1568–72.PubMedPubMedCentralGoogle Scholar
  71. Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T, Tsuboi K, et al. Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex. Science. 2010;330:974–80. doi:10.1126/science.1193438.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang T, Pentyala S, Elliott JT, Dowal L, Gupta E, Rebecchi MJ, et al. Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Proc Natl Acad Sci U S A. 1999b;96:7843–6.PubMedPubMedCentralGoogle Scholar
  73. Wang T, Pentyala S, Rebecchi MJ, Scarlata S. Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry. 1999a;38:1517–24. doi:10.1021/bi982008f.CrossRefPubMedGoogle Scholar
  74. Wang D, Feng J, Wen R, Marine JC, Sangster MY, Parganas E, et al. Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity. 2000;13:25–35.Google Scholar
  75. Wang H, Oestreich EA, Maekawa N, Bullard TA, Vikstrom KL, Dirksen RT, et al. Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res. 2005;97:1305–13. doi:10.1161/01.RES.0000196578.15385.bb.CrossRefPubMedGoogle Scholar
  76. Yu P, Constien R, Dear N, Katan M, Hanke P, Bunney TD, et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external Ca2+ entry. Immunity. 2005;22:451–65. doi:10.1016/j.immuni.2005.01.018.CrossRefPubMedGoogle Scholar
  77. Yun S, Moller A, Chae SK, Hong WP, Bae YJ, Bowtell DD, et al. Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J Biol Chem. 2008;283:1034–42. doi:10.1074/jbc.M705874200.CrossRefPubMedGoogle Scholar
  78. Zhang L, Malik S, Pang J, Wang H, Park KM, Yule DI, et al. Phospholipase Cepsilon hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell. 2013;153:216–27. doi:10.1016/j.cell.2013.02.047.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhou Y, Wing MR, Sondek J, Harden TK. Molecular cloning and characterization of PLC-eta2. Biochem J. 2005;391:667–76. doi:10.1042/BJ20050839.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hyun-Jun Jang
    • 1
  • Yong Ryoul Yang
    • 1
  • Lucio Cocco
    • 2
  • Sung Ho Ryu
    • 3
  • Pann-Ghill Suh
    • 1
  1. 1.School of Life ScienceUlsan National Institute of Science and TechnologyUlsanKorea
  2. 2.Cellular Signalling Laboratory, Department of Biomedical SciencesUniversity of BolognaBolognaItaly
  3. 3.Department of Life SciencesPohang University of Science and TechnologyPohangKorea