Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Valérie Bello
  • Thierry DarribèreEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101578


Historical Background

Thirty years ago, the biochemical studies of plasma membranes of rodent NG108–15 neural hybrid cells, 14-day embryonic chicken brain, and mouse 3 T3 fibroblasts had led to the identification of cranin (LBP120), a glycosylated laminin-binding protein. Later, by sucrose-gradient centrifugation following purification of proteins from heavy microsomes of rabbit skeletal muscles using wheat germ agglutinin and DEAE-sepharose, four novel glycoproteins associated with dystrophin were purified and labelled as the “dystrophin-glycoprotein complex (DGC)” (Ervasti et al. 1990). At the center of this complex, the dystroglycan (DG) has been identified as a glycan component whose amino acid sequence is identical to cranin. Since then, other members of the DGC were identified. Thus, the DGC provides a link between proteins of the extracellular matrix...
This is a preview of subscription content, log in to check access.


  1. Adams JC, Brancaccio A. The evolution of the dystroglycan complex, a major mediator of muscle integrity. Biol Open. 2015;4(9):1163–79.  https://doi.org/10.1242/bio.012468.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, et al. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain. 2013;136:269–81.  https://doi.org/10.1093/brain/aws312.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem. 2015;157(1):1–12.  https://doi.org/10.1093/jb/mvu066. Epub 2014 Nov 7.CrossRefPubMedGoogle Scholar
  4. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990;345(6273):315–9.CrossRefPubMedGoogle Scholar
  5. Geis T, Marquard K, Rödl T, Reihle C, Schirmer S, von Kalle T, et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics. 2013;14:205–13.  https://doi.org/10.1007/s10048-013-0374-9.CrossRefPubMedGoogle Scholar
  6. Gerin I, Ury B, Breloy I, Bouchet-Seraphin C, Bolsée J, Halbout M, et al. ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun. 2016;7:11534.  https://doi.org/10.1038/ncomms11534.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, et al. A dystroglycan mutation associated with limb-girdle muscular dystrophy. New Engl J Med. 2011;364:939–46.  https://doi.org/10.1056/NEJMoa1006939.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Leocadio D, Mitchell A, Winder SJ. γ-Secretase dependent nuclear targeting of dystroglycan. J Cell Biochem. 2016;117(9):2149–57.  https://doi.org/10.1002/jcb.25537.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Martínez-Vieyra IA, Vásquez-Limeta A, González-Ramírez R, Morales-Lázaro SL, Mondragón M, Mondragón R, et al. A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts. Biochim Biophys Acta. 2013;1833(3):698–711.  https://doi.org/10.1016/j.bbamcr.2012.11.019.CrossRefPubMedGoogle Scholar
  10. McClenahan FK, Sharma H, Shan X, Eyermann C, Colognato H. Dystroglycan suppresses notch to regulate stem cell niche structure and function in the developing postnatal subventricular zone. Dev Cell. 2016;38:548–66.  https://doi.org/10.1016/j.devcel.2016.07.017.CrossRefPubMedGoogle Scholar
  11. Oldstone MB, Campbell KP. Decoding arenavirus pathogenesis: essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology. 2011;411(2):170–9.  https://doi.org/10.1016/j.virol.2010.11.023.CrossRefPubMedGoogle Scholar
  12. Oppliger J, Torriani G, Herrador A, Kunz S. Lassa virus cell entry via dystroglycan involves an unusual pathway of macropinocytosis. J Virol. 2016;90(14):6412–29.  https://doi.org/10.1128/JVI.00257-16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Praissman JL, Willer T, Sheikh MO, Toi A, Chitayat D, Lin YY, et al. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. Elife. 2016;5:pii: e14473.  https://doi.org/10.7554/eLife.14473.CrossRefGoogle Scholar
  14. Riemersma M, Mandel H, van Beusekom E, Gazzoli I, Roscioli T, Eran A, et al. Absence of α- and β-dystroglycan is associated with Walker-Warburg syndrome. Neurology. 2015;84(21):2177–82.  https://doi.org/10.1212/WNL.0000000000001615.CrossRefPubMedGoogle Scholar
  15. Sciandra F, Bigotti MG, Giardina B, Bozzi M, Brancaccio A. Genetic engineering of dystroglycan in animal models of muscular dystrophy. Biomed Res Int. 2015;2015:635792.  https://doi.org/10.1155/2015/635792.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Taniguchi-Ikeda M, Morioka I, Iijima K, Toda T. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: a review. Mol Asp Med. 2016;51:115–24.  https://doi.org/10.1016/j.mam.2016.07.003.CrossRefGoogle Scholar
  17. Vásquez-Limeta A, Wagstaff KM, Ortega A, Crouch DH, Jans DA, Cisneros B. Nuclear import of β-dystroglycan is facilitated by ezrin-mediated cytoskeleton reorganization. PLoS One. 2014;9(3):e90629.  https://doi.org/10.1371/journal.pone.0090629.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Yatsenko AS, Marrone AK, Shcherbata HR. miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3′-UTR. Nat Commun. 2014;5:4906–22.  https://doi.org/10.1038/ncomms5906.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to basement membrane. Glycobiology. 2015;25:702–13.  https://doi.org/10.1093/glycob/cwv021.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Biologie du développementSorbonne Universités, UPMC Universités Paris 06, CNRS, Institut de Biologie Paris Seine (LBD – IBPS)ParisFrance