Skip to main content

Aryl Hydrocarbon Receptor

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem. 2010;391:1235–48.

    Article  PubMed  CAS  Google Scholar 

  • Abnet CC, Tanguay RL, Hahn ME, Heideman W, Peterson RE. Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss). Evidence for differential expression and enhancer specificity. J Biol Chem. 1999;274:15159–66.

    Article  PubMed  CAS  Google Scholar 

  • Andreasen EA, Hahn ME, Heideman W, Peterson RE, Tanguay RL. The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. Mol Pharmacol. 2002;62:234–49.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson C, Whitelaw ML, Mcguire J, Gustafsson JA, Poellinger L. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol Cell Biol. 1995;15:756–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol. 2002;12:319–28.

    Article  PubMed  CAS  Google Scholar 

  • Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007;581:3608–15.

    Article  PubMed  CAS  Google Scholar 

  • Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J Biol Chem. 2000;275:36407–14.

    Article  PubMed  CAS  Google Scholar 

  • Bocio A, Domingo JL. Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. Environ Res. 2005;97:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bollerot K, Angelier N, Coumailleau P. Molecular cloning and embryonic expression of the Xenopus Arnt gene. Mech Dev. 2001;108:227–31.

    Article  PubMed  CAS  Google Scholar 

  • Brunnberg S, Swedenborg E, Gustafsson J. Functional interactions fo AHR with other receptors. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 127–41.

    Google Scholar 

  • Burbach KM, Poland A, Bradfield CA. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA. 1992;89:8185–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71:353–69.

    Article  PubMed  Google Scholar 

  • Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene. 2001;278:223–34.

    Article  PubMed  CAS  Google Scholar 

  • Chan JK, Man YB, Xing GH, Wu SC, Murphy MB, Xu Y, Wong MH. Dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans via fish consumption and dioxin-like activity in fish determined by H4IIE-luc bioassay. Sci Total Environ. 2013;463–464:1192–200.

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Smith DR, Prasad VS, Sidman CL, Nebert DW, Puga A. Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics. 1993;3:312–21.

    Article  PubMed  CAS  Google Scholar 

  • DeGroot D, He G, Fraccalvieri D, Bonati L, Pandini A, Denison MS. AHR ligands: promiscuity in binding and diversity in response. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 63–79.

    Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, Desantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-I T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298:2157–67.

    Article  PubMed  CAS  Google Scholar 

  • Denis M, Cuthill S, Wikstrom AC, Poellinger L, Gustafsson JA. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys Res Commun. 1988;155:801–7.

    Article  PubMed  CAS  Google Scholar 

  • Denison MS, Fisher JM, Whitlock Jr JP. The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem. 1988a;263:17221–4.

    PubMed  CAS  Google Scholar 

  • Denison MS, Fisher JM, Whitlock Jr JP. Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc Natl Acad Sci USA. 1988b;85:2528–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denison MS, Soshilov AA, He G, Degroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011;124:1–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devito MJ, Birnbaum LS, Farland WH, Gasiewicz TA. Comparisons of estimated human body burdens of dioxinlike chemicals and TCDD body burdens in experimentally exposed animals. Environ Health Perspect. 1995;103:820–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan DM, Burgess EA, Duncan I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 1998;12:1290–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dwyer JH, Flesch-Janys D. Agent Orange in Vietnam. Am J Public Health. 1995;85:476–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elferink CJ, Whitlock Jr JP. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-inducible, Ah receptor-mediated bending of enhancer DNA. J Biol Chem. 1990;265:5718–21.

    PubMed  CAS  Google Scholar 

  • Ema M, Sogawa K, Watanabe N, Chujoh Y, Matsushita N, Gotoh O, Funae Y, Fujii-Kuriyama Y. cDNA cloning and structure of mouse putative Ah receptor. Biochem Biophys Res Commun. 1992;184:246–53.

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Ohe N, Suzuki M, Mimura J, Sogawa K, Ikawa S, Fujii-Kuriyama Y. Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J Biol Chem. 1994;269:27337–43.

    PubMed  CAS  Google Scholar 

  • Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST. The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development. 1999;126:3937–45.

    PubMed  CAS  Google Scholar 

  • Emmons RB, Duncan D, Duncan I. Regulation of the Drosophila distal antennal determinant spineless. Dev Biol. 2007;302:412–26.

    Article  PubMed  CAS  Google Scholar 

  • Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:40–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proc Natl Acad Sci USA. 1988;85:5859–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O. Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem. 1995;270:29270–8.

    Article  PubMed  CAS  Google Scholar 

  • Gasiewica TA, Henry E. History of research on the AHR. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 3–32.

    Google Scholar 

  • Gielen JE, Goujon FM, Nebert DW. Genetic regulation of aryl hydrocarbon hydroxylase induction. II Simple Mendelian expression in mouse tissues in vivo. J Biol Chem. 1972;247:1125–37.

    PubMed  CAS  Google Scholar 

  • Gough M. Agent Orange: exposure and policy. Am J Public Health. 1991;81:289–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–61.

    Article  PubMed  CAS  Google Scholar 

  • Hahn ME. Dioxin toxicology and the aryl hydrocarbon receptor: insights from fish and other non-traditional models. Mar Biotechnol (NY). 2001;3:S224–38.

    Article  CAS  Google Scholar 

  • Hahn ME. Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact. 2002;141:131–60.

    Article  PubMed  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Shapiro MA, Perera SA. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc Natl Acad Sci USA. 1997;94:13743–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool A Comp Exp Biol. 2006;305:693–706.

    Article  PubMed  Google Scholar 

  • Hankinson O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys. 2005;433:379–86.

    Article  PubMed  CAS  Google Scholar 

  • Hansson M, Barregard L, Sallsten G, Svensson BG, Rappe C. Polychlorinated dibenzo-p-dioxin and dibenzofuran levels and patterns in polyvinylchloride and chloralkali industry workers. Int Arch Occup Environ Health. 1997;70:51–6.

    Article  PubMed  CAS  Google Scholar 

  • Harper PA, Riddick DS, Okey AB. Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol. 2006;72:267–79.

    Article  PubMed  CAS  Google Scholar 

  • Heid SE, Walker MK, Swanson HI. Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol Sci. 2001;61:187–96.

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Zheng M, Liu W, Li C, Nie Z, Liu G, Xiao K, Dong S. Occupational exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in workplaces of secondary nonferrous metallurgical facilities in China. Environ Sci Technol. 2013;47:7773–9.

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Elferink CJ. A novel nonconsensus xenobiotic response element capable of mediating aryl hydrocarbon receptor-dependent gene expression. Mol Pharmacol. 2012;81:338–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Powell-Coffman JA, Jin Y. The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development. 2004;131:819–28.

    Article  PubMed  CAS  Google Scholar 

  • IARC. IARC Working Group on the evaluation of carcinogenic risks to humans: polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. Lyon, France, 4–11 February 1997. IARC Monogr Eval Carcinog Risks Hum. 1997;69:1–631.

    Google Scholar 

  • Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 1998;273:2895–904.

    Article  PubMed  CAS  Google Scholar 

  • INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY. ENVIRONMENTAL HEALTH CRITERIA 88. Polychlorinated Dibenso-Para-Dioxin and Dibenzofurans. International Programme on Chemical Safety. 1989. http://www.inchem.org/documents/ehc/ehc/ehc88.htm

  • Jeuken A, Keser BJ, Khan E, Brouwer A, Koeman J, Denison MS. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J Agric Food Chem. 2003;51:5478–87.

    Article  PubMed  CAS  Google Scholar 

  • Karchner SI, Powell WH, Hahn ME. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. J Biol Chem. 1999;274:33814–24.

    Article  PubMed  CAS  Google Scholar 

  • Karchner SI, Franks DG, Hahn ME. AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. Biochem J. 2005;392:153–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karchner SI, Franks DG, Kennedy SW, Hahn ME. The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2006;103:6252–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz RS, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA. 2009;106:13481–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelada FS. Occupational intake by dermal exposure to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in pulp mill industry. Am Ind Hyg Assoc J. 1990;51:519–21.

    Article  PubMed  CAS  Google Scholar 

  • Kim MD, Jan LY, Jan YN. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev. 2006;20:2806–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Q, Whitlock Jr JP. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem. 1997;272:8878–84.

    Article  PubMed  CAS  Google Scholar 

  • Lavine JA, Rowatt AJ, Klimova T, Whitington AJ, Dengler E, Beck C, Powell WH. Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci. 2005;88:60–72.

    Article  PubMed  CAS  Google Scholar 

  • Mandal PK. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol B. 2005;175:221–30.

    Article  PubMed  CAS  Google Scholar 

  • Marlowe JL, Knudsen ES, Schwemberger S, Puga A. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J Biol Chem. 2004;279:29013–22.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KA, Elferink CJ. Timing is everything: consequences of transient and sustained AhR activity. Biochem Pharmacol. 2009;77:947–56.

    Article  PubMed  CAS  Google Scholar 

  • Mocarelli P. Seveso: a teaching story. Chemosphere. 2001;43:391–402.

    Article  PubMed  CAS  Google Scholar 

  • Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14:801–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones. 1996;1:237–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nebert DW, Goujon FM, Gielen JE. Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nat New Biol. 1972;236:107–10.

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Negishi M, Lang MA, Hjelmeland LM, Eisen HJ. The Ah locus, a multigene family necessary for survival in a chemically adverse environment: comparison with the immune system. Adv Genet. 1982;21:1–52.

    PubMed  CAS  Google Scholar 

  • Ohi H, Fujita Y, Miyao M, Saguchi K, Murayama N, Higuchi S. Molecular cloning and expression analysis of the aryl hydrocarbon receptor of Xenopus laevis. Biochem Biophys Res Commun. 2003;307:595–9.

    Article  PubMed  CAS  Google Scholar 

  • Ohtake F, Kato S. The E3 ubiquitin ligase activity of transcription factor AHR permits nongenomic regulation of biological pathways. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 143–56.

    Google Scholar 

  • Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature. 2007;446:562–6.

    Article  PubMed  CAS  Google Scholar 

  • Pelclova D, Urban P, Preiss J, Lukas E, Fenclova Z, Navratil T, Dubska Z, Senholdova Z. Adverse health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health. 2006;21:119–38.

    Article  PubMed  CAS  Google Scholar 

  • Perdew GH, Bradfield CA. Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochem Mol Biol Int. 1996;39:589–93.

    PubMed  CAS  Google Scholar 

  • Peterson KJ, Butterfield NJ. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci USA. 2005;102:9547–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrulis JR, Perdew GH. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem Biol Interact. 2002;141:25–40.

    Article  PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Korkalainen M, Moffat ID, Boutros PC, Okey AB. Role of the AHR and its structure in TCDD toxicity. In: Pohjanvirta R, editor. The Ah receptor in biology and toxicology. Hoboken: Wiley; 2012. p. 181–96.

    Google Scholar 

  • Poland A, Glover E, Kende AS. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976;251:4936–46.

    PubMed  CAS  Google Scholar 

  • Poland A, Palen D, Glover E. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol. 1994;46:915–21.

    PubMed  CAS  Google Scholar 

  • Pollenz RS, Wilson SE, Dougherty EJ. Role of endogenous XAP2 protein on the localization and nucleocytoplasmic shuttling of the endogenous mouse Ahb-1 receptor in the presence and absence of ligand. Mol Pharmacol. 2006;70:1369–79.

    Article  PubMed  CAS  Google Scholar 

  • Powell-Coffman JA, Bradfield CA, Wood WB. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci USA. 1998;95:2844–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Public Health England. Dioxins toxicological overview. Prepared by the Toxicology Department CRCE, PHE version 1. 2008.

    Google Scholar 

  • Puga A, Barnes SJ, Dalton TP, Chang C, Knudsen ES, Maier MA. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem. 2000;275:2943–50.

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94.

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Powell-Coffman JA. The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol. 2004;270:64–75.

    Article  PubMed  CAS  Google Scholar 

  • Ramadoss P, Perdew GH. Use of 2-azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin as a probe to determine the relative ligand affinity of human versus mouse aryl hydrocarbon receptor in cultured cells. Mol Pharmacol. 2004;66:129–36.

    Article  PubMed  CAS  Google Scholar 

  • Ramadoss P, Perdew GH. The transactivation domain of the Ah receptor is a key determinant of cellular localization and ligand-independent nucleocytoplasmic shuttling properties. Biochemistry. 2005;44:11148–59.

    Article  PubMed  CAS  Google Scholar 

  • Rannug A, Rannug U, Rosenkranz HS, Winqvist L, Westerholm R, Agurell E, Grafstrom AK. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J Biol Chem. 1987;262:15422–7.

    PubMed  CAS  Google Scholar 

  • Rannug U, Rannug A, Sjoberg U, Li H, Westerholm R, Bergman J. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol. 1995;2:841–5.

    Article  PubMed  CAS  Google Scholar 

  • Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 1992;256:1193–5.

    Article  PubMed  CAS  Google Scholar 

  • Rowatt AJ, Depowell JJ, Powell WH. ARNT gene multiplicity in amphibians: characterization of ARNT2 from the frog Xenopus laevis. J Exp Zool B Mol Dev Evol. 2003;300:48–57.

    Article  PubMed  Google Scholar 

  • Rowlands JC, Mcewan IJ, Gustafsson JA. Trans-activation by the human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins: direct interactions with basal transcription factors. Mol Pharmacol. 1996;50:538–48.

    PubMed  CAS  Google Scholar 

  • Roy NK, Wirgin I. Characterization of the aromatic hydrocarbon receptor gene and its expression in Atlantic tomcod. Arch Biochem Biophys. 1997;344:373–86.

    Article  PubMed  CAS  Google Scholar 

  • Ryan JJ, Norstrom RJ. Occurrence of polychlorinated dibenzodibenzo-p-dioxins and dibenzofurans in humans and major exposure routes. IARC Sci Publ. 1991;108:51–104.

    Google Scholar 

  • Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A. Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environ Health Perspect. 2009;117:1139–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci USA. 1996;93:6731–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Signorini S, Gerthoux PM, Dassi C, Cazzaniga M, Brambilla P, Vincoli N, Mocarelli P. Environmental exposure to dioxin: the Seveso experience. Andrologia. 2000;32:263–70.

    Article  PubMed  CAS  Google Scholar 

  • Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development. 1997;124:4571–82.

    PubMed  CAS  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS. The Trichoplax genome and the nature of placozoans. Nature. 2008;454:955–60.

    Article  PubMed  CAS  Google Scholar 

  • Steenland K, Bertazzi P, Baccarelli A, Kogevinas M. Dioxin revisited: developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect. 2004;112:1265–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svensson BG, Nilsson A, Hansson M, Rappe C, Akesson B, Skerfving S. Exposure to dioxins and dibenzofurans through the consumption of fish. N Engl J Med. 1991;324:8–12.

    Article  PubMed  CAS  Google Scholar 

  • Swanson HI, Chan WK, Bradfield CA. DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem. 1995;270:26292–302.

    Article  PubMed  CAS  Google Scholar 

  • The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.

    Article  CAS  Google Scholar 

  • U.S. EPA. Exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds National Academy Sciences (NAS) review draft. Environmental Protection Agency, USA. 2007.

    Google Scholar 

  • Vogel CF, Sciullo E, Matsumura F. Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochem Biophys Res Commun. 2007a;363:722–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol Endocrinol. 2007b;21:2941–55.

    Article  PubMed  CAS  Google Scholar 

  • Walker MK, Heid SE, Smith SM, Swanson HI. Molecular characterization and developmental expression of the aryl hydrocarbon receptor from the chick embryo. Comp Biochem Physiol C Toxicol Pharmacol. 2000;126:305–19.

    PubMed  CAS  Google Scholar 

  • Wilson SR, Joshi AD, Elferink CJ. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J Pharmacol Exp Ther. 2013;345:419–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasui T, Kim EY, Iwata H, Tanabe S. Identification of aryl hydrocarbon receptor 2 in aquatic birds; cDNA cloning of AHR1 and AHR2 and characteristics of their amino acid sequences. Mar Environ Res. 2004;58:113–8.

    Article  PubMed  CAS  Google Scholar 

  • Yasui T, Kim EY, Iwata H, Franks DG, Karchner SI, Hahn ME, Tanabe S. Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species. Toxicol Sci. 2007;99:101–17.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Bohonowych JE, Timme-Laragy A, Jung D, Affatato AA, Rice RH, Di Giulio RT, Denison MS. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS One. 2013;8:e56860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Q., VonHandorf, A., Puga, A. (2018). Aryl Hydrocarbon Receptor. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101571

Download citation

Publish with us

Policies and ethics