Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Matriptase (ST14, Suppressor of Tumorigenicity 14 Protein)

Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101517

Synonyms

Historical Background

Matriptase is a type II transmembrane serine protease expressed in most types of epithelia (Oberst et al. 2003a). Matriptase was discovered in 1993 as a novel matrix degrading enzyme purified from human breast cancer cells (Shi et al. 1993). Since then, five independent groups have cloned the matriptase cDNA, and the protease has been published under the names membrane-type serine protease 1 (MT-SP1), tumor-associated differentially expressed gene-15 (TADG-15), epithin (in mouse), and SNC19 (Kim et al. 1999; Takeuchi et al. 1999; Cao et al. 2001; Tanimoto et al. 2001). The matriptase gene was given the name suppression of tumorgenecity 14 (ST14) (Zhang et al. 1998).

Matriptase expression studies have been performed in adult human tissue by mRNA, and protein analysis and matriptase expression has been found...

This is a preview of subscription content, log in to check access.

References

  1. Basel-Vanagaite L, Attia R, Ishida-Yamamoto A, Rainshtein L, Ben Amitai D, Lurie R, et al. Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am J Hum Genet. 2007;80:467–77.  https://doi.org/10.1086/512487.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beliveau F, Desilets A, Leduc R. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J. 2009;276:2213–26.  https://doi.org/10.1111/j.1742-4658.2009.06950.x.CrossRefGoogle Scholar
  3. Cao J, Zheng S, Zheng L, Cai X, Zhang Y, Geng L, et al. A novel serine protease SNC19 associated with human colorectal cancer. Chin Med J (Engl). 2001;114:726–30.Google Scholar
  4. Carney TJ, von der Hardt S, Sonntag C, Amsterdam A, Topczewski J, Hopkins N, et al. Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development. 2007;134:3461–71.  https://doi.org/10.1242/dev.004556.CrossRefGoogle Scholar
  5. Chen CJ, Wu BY, Tsao PI, Chen CY, Wu MH, Chan YL, et al. Increased matriptase zymogen activation in inflammatory skin disorders. Am J Phys Cell Physiol. 2011;300:C406–15.  https://doi.org/10.1152/ajpcell.00403.2010.CrossRefGoogle Scholar
  6. Desilets A, Beliveau F, Vandal G, McDuff FO, Lavigne P, Leduc R. Mutation G827R in matriptase causing autosomal recessive ichthyosis with hypotrichosis yields an inactive protease. J Biol Chem. 2008;283:10535–42.  https://doi.org/10.1074/jbc.M707012200.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Friis S, Madsen DH, Bugge TH. Distinct developmental functions of prostasin (CAP1/PRSS8) zymogen and activated prostasin. J Biol Chem. 2016;291:2577–82.  https://doi.org/10.1074/jbc.C115.706721.CrossRefGoogle Scholar
  8. Friis S, Uzzun Sales K, Godiksen S, Peters DE, Lin CY, Vogel LK, et al. A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation. J Biol Chem. 2013;288:19028–39.  https://doi.org/10.1074/jbc.M113.469932.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, et al. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics. 1999;49:420–8.Google Scholar
  10. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, et al. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol. 2005;170:487–96.  https://doi.org/10.1083/jcb.200501038.CrossRefPubMedPubMedCentralGoogle Scholar
  11. List K, Currie B, Scharschmidt TC, Szabo R, Shireman J, Molinolo A, et al. Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice. J Biol Chem. 2007a;282:36714–23.  https://doi.org/10.1074/jbc.M705521200.CrossRefGoogle Scholar
  12. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, et al. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene. 2002;21:3765–79.  https://doi.org/10.1038/sj.onc.1205502.CrossRefGoogle Scholar
  13. List K, Hobson JP, Molinolo A, Bugge TH. Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol. 2007b;213:237–45.  https://doi.org/10.1002/jcp.21115.CrossRefGoogle Scholar
  14. List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, et al. Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol. 2009;175:1453–63.  https://doi.org/10.2353/ajpath.2009.090240.CrossRefPubMedPubMedCentralGoogle Scholar
  15. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev. 2005;19:1934–50.  https://doi.org/10.1101/gad.1300705.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, et al. Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem. 2006;281:32941–5.  https://doi.org/10.1074/jbc.C600208200.CrossRefGoogle Scholar
  17. Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, Lin CY. Characterization of matriptase expression in normal human tissues. J Histochem Cytochem. 2003a;51:1017–25.Google Scholar
  18. Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY. The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem. 2003b;278:26773–9.  https://doi.org/10.1074/jbc.M304282200.CrossRefGoogle Scholar
  19. Perona JJ, Craik CS. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem. 1997;272:29987–90.Google Scholar
  20. Peters DE, Szabo R, Friis S, Shylo NA, Uzzun Sales K, Holmbeck K, et al. The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem. 2014;289:14740–9.  https://doi.org/10.1074/jbc.M113.541318.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sales KU, Friis S, Konkel JE, Godiksen S, Hatakeyama M, Hansen KK, et al. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene. 2015;34:346–56.  https://doi.org/10.1038/onc.2013.563.CrossRefGoogle Scholar
  22. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res. 1993;53:1409–15.Google Scholar
  23. Szabo R, Bugge TH. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu Rev Cell Dev Biol. 2011;27:213–35.  https://doi.org/10.1146/annurev-cellbio-092910-154247.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH. Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development. 2009;136:2653–63.  https://doi.org/10.1242/dev.038430.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Szabo R, Molinolo A, List K, Bugge TH. Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene. 2007;26:1546–56.  https://doi.org/10.1038/sj.onc.1209966.CrossRefGoogle Scholar
  26. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, et al. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene. 2011;30:2003–16.  https://doi.org/10.1038/onc.2010.586.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A. 1999;96:11054–61.PubMedPubMedCentralGoogle Scholar
  28. Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ. Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol. 2001;22:104–14. doi:50604Google Scholar
  29. Tseng IC, Chou FP, Su SF, Oberst M, Madayiputhiya N, Lee MS, et al. Purification from human milk of matriptase complexes with secreted serpins: mechanism for inhibition of matriptase other than HAI-1. Am J Phys Cell Physiol. 2008;295:C423–31.  https://doi.org/10.1152/ajpcell.00164.2008.CrossRefGoogle Scholar
  30. Zhang Y, Cai X, Schlegelberger B, Zheng S. Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24-->q25 by in situ hybridization. Cytogenet Cell Genet. 1998;83:56–7. doi:15125Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Veterinary Disease Biology, Section for Molecular Disease BiologyUniversity of CopenhagenCopenhagenDenmark