Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RIAM (Rap1-Interactive Adaptor Molecule)

  • Kankana BardhanEmail author
  • Nikolaos Patsoukis
  • Duygu Sari
  • Jessica D. Weaver
  • Lequn Li
  • Alvaro Torres-Gomez
  • Laura Strauss
  • Esther M. Lafuente
  • Vassiliki A. Boussiotis
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101516


Historical Background

RIAM was identified in a search of new effector molecules of the small guanosine triphosphatase (GTPase) Rap1, using the yeast two-hybrid system screen. Due to its interaction with Rap1, the newly identified Rap1-interacting effector was named RIAM (Rap1-interacting adaptor molecule) (Lafuente et al. 2004). Before its identification as a Rap1-interacting molecule, RIAM was found as a binding partner of the amyloid beta (A4) precursor protein-binding, family B, member 1 (APBB1) – also known as neural Fe65 protein – and was termed amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein (APBB1IP) (Ermekova et al. 1997). In an independent study, RIAM was identified as a protein whose expression was induced in response to all-transretinoic...

This is a preview of subscription content, log in to check access.



This work was supported by NIH grants CA183605, CA183605S1, and AI098129-01 and the DoD grant PC140571 (VAB), SAF2012-34561, and SAF2016-77096- R (EML).


  1. Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol. 2009;27:339–62.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Chang YC, et al. Structural and mechanistic insights into the recruitment of talin by RIAM in integrin signaling. Structure. 2014;22(12):1810–20.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Colo GP, et al. Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway. J Cell Sci. 2012;125(Pt 22):5338–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ehlers MR. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2000;2(3):289–94.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ellegard R, et al. Complement opsonization of HIV-1 results in decreased antiviral and inflammatory responses in immature dendritic cells via CR3. J Immunol. 2014;193(9):4590–601.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ermekova KS, et al. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J Biol Chem. 1997;272(52):32869–77.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Goult BT, et al. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. J Biol Chem. 2013;288(12):8238–49.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Han J, et al. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol. 2006;16(18):1796–806.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hernández-Varas P, et al. RIAM is required for melanoma cell invasion and growth involving activation of RhoA and integrin-dependent downstream signaling. J Biol Chem. 2011;286(21):18492–504.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Holt LJ, Daly RJ. Adapter protein connections: the MRL and Grb7 protein families. Growth Factors (Chur, Switzerland). 2005;23(3):193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Holt MR, Koffer A. Cell motility: proline-rich proteins promote protrusions. Trends Cell Biol. 2001;11:38–43.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Inagaki T, et al. The retinoic acid-responsive proline-rich protein is identified in promyeloleukemic HL-60 cells. J Biol Chem. 2003;278(51):51685–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ingham RJ, et al. WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol. 2005;25(16):7092–106.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Jenzora A, et al. PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Lett. 2005;579(2):455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kim M, et al. Bidirectional transmembran signaling by cytoplasmic domain separation in integrins. Science. 2003;301(5640):1720–5.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Klapproth S, et al. Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired beta2 integrin function in mice. Blood. 2015;126(25):2704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Krause M, et al. ENA/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol. 2003;19:541–64.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Krause M, et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell. 2004;7(4):571–83.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Lafuente E, Boussiotis VA. Rap1 regulation of RIAM and cell adhesion. Methods Enzymol. 2006;407:345–58.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lafuente EM, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004;7(4):585–95.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lagarrigue F, et al. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun. 2015;6:8492.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lee HS, et al. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem. 2009;284(8):5119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lee HS, et al. Two modes of integrin activation form a binary molecular switch in adhesion maturation. Mol Biol Cell. 2013;24(9):1354–62.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lefort CT, et al. Outside-in signal transmission by conformational changes in integrin Mac-1. J Immunol. 2009;183(10):6460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lim J, et al. An essential role for talin during alpha(M)beta(2)-mediated phagocytosis. Mol Biol Cell. 2007;18(3):976–85.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lyulcheva E, et al. Drosophila pico and its mammalian ortholog lamellipodin activate serum response factor and promote cell proliferation. Dev Cell. 2008;15(5):680–90.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Manser J, et al. C.elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev Biol. 1997;184:150–64.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Mayadas TN, Cullere X. Neutrophil beta2 integrins: moderators of life or death decisions. Trends Immunol. 2005;26(7):388–95.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Medrano-Fernandez I, et al. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell Mol Life Sci. 2013;70(13):2395–410.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Menasche G, et al. RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation. Mol Cell Biol. 2007;27(11):4070–81.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Niebuhr K, et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 1997;16(17):5433–44.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Patsoukis N, et al. RIAM regulates the cytoskeletal distribution and activation of PLC-gamma1 in T cells. Sci Signal. 2009;2(99):ra79.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Reed JH, et al. Complement receptor 3 influences toll-like receptor 7/8-dependent inflammation: implications for autoimmune diseases characterized by antibody reactivity to ribonucleoproteins. J Biol Chem. 2013;288(13):9077–83.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Renfranz PJ, Beckerle MC. Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol. 2002;14(1):88–103.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Shattil SJ, et al. The final steps of integrin activation: the end game. Nat Rev. 2010;11(4):288–300.CrossRefGoogle Scholar
  37. Sari D, et al. Phosphorylation of tyrosine 340 in the plekstrin homology domain of RIAM is required for tranlocation of RIAM to the plasma membrane, phosphorylation of RIAM-associated PLC-g1 and LFA-1 activation. Blood. 2014;124:2743.Google Scholar
  38. Skoberne M, et al. The apoptotic-cell receptor CR3, but not alphavbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood. 2006;108(3):947–55.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Stritt S, et al. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood. 2014;125(2):219–22.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Su W, et al. Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood. 2015;126(25):2695–703.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Vachon E, et al. CD44-mediated phagocytosis induces inside-out activation of complement receptor-3 in murine macrophages. Blood. 2007;110(13):4492–502.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Watanabe N, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3. J Cell Biol. 2008;181(7):1211–22.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Worth DC, et al. Alpha v beta3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. J Cell Biol. 2010;189(2):369–83.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Wynne JP, et al. Rap1-Interacting Adapter Molecule (RIAM) Associates with the Plasma Membrane via a Proximity Detector. J Cell Biol. 2012;199(2):317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Yamahashi Y, Cavnar PJ, Hind LE, Berthier E, Bennin DA, Beebe D, Huttenlocher A. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D. Biomed Microdev. 2015;17:1–9.Google Scholar
  46. Yang J, et al. Conformational activation of talin by RIAM triggers integrin-mediated cell adhesion. Nat Commun. 2014;5:5880.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Yang LJ, et al. Epidermal growth factor-induced activation and translocation of phospholipase C-gamma 1 to the cytoskeleton in rat hepatocytes. J Biol Chem. 1994;269(10):7156–62.PubMedPubMedCentralGoogle Scholar
  48. Zhang H, et al. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. J Mol Cell Biol. 2014;6(2):128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ziegler WH, et al. The structure and regulation of vinculin. Trends Cell Biol. 2006;16(9):453–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kankana Bardhan
    • 1
    Email author
  • Nikolaos Patsoukis
    • 1
  • Duygu Sari
    • 1
  • Jessica D. Weaver
    • 1
  • Lequn Li
    • 1
    • 3
  • Alvaro Torres-Gomez
    • 2
  • Laura Strauss
    • 1
  • Esther M. Lafuente
    • 2
  • Vassiliki A. Boussiotis
    • 1
  1. 1.Division of Hematology-Oncology, Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.School of Medicine, Unit of ImmunologyComplutense University of MadridMadridSpain
  3. 3.Division of Thoracic Surgery at Tongji Hospital Tongji Medical SchoolHuazhong University of Science and TechnologyWuhanChina