Skip to main content

Carbon, Nitrogen, and Phosphorous Removal, Basics and Overview of Technical Applications

  • Living reference work entry
  • First Online:
  • 332 Accesses

Abstract

Used water consists largely of organic carbon, either as a solution or particulate matter. Apart from organic compounds, nitrogen and phosphorus also number among the main used water constituents. The overall objective of biological treatment is to reduce these dissolved and particulate biodegradable constituents to an extent that prevents them from inducing a further deterioration in the receiving waters and its communities. This biological treatment is carried out by different groups of microorganisms, but it is bacteria that are primarily responsible for the conversion processes, and depending upon how the biomass exists in the reactor, biological treatment can be divided into suspended and attached growth. Hybrid processes represent a new chapter in biological used water treatment and combine the benefits of both suspended and attached growth processes. Three different types of biochemical processes can occur as used water is treated: carbon, nitrogen, and phosphorus removal. In order to remove these pollutants, various reactor’s configuration and combination of anaerobic, anoxic, and aerobic conditions are required. This chapter deals with these conversion processes and basic removal mechanisms, and process schemes and treatment methods are also described.

This is a preview of subscription content, log in via an institution.

References

  • Barnard JL (1976) A Review of Biological Phosphorous Removal in Activated Sludge Process. Water SA 2(3):136–144

    CAS  Google Scholar 

  • Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17(6):491–493

    Article  CAS  Google Scholar 

  • Dabi N (2015) Comparison of suspended growth and attached growth wastewater treatment process: a case study of wastewater treatment plant at MNIT. Jaipur. European Journal of Advances in Engineering and Technology 2(2):102–105

    Google Scholar 

  • Davies M (2011) Water and wastewater engineering: design principles and practice. McGraw-Hill, New York

    Google Scholar 

  • DWA-A 131 (2016) Dimensioning of single-stage activated sludge plants. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • DWA-A 202 (2004) Chemical-physical methods for the removal of phosphorus from wastewater. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • DWA-A 281 (2002) Dimensioning of trickling filters and rotating biological contactors. Copyright GFA, Hennef

    Google Scholar 

  • DWA-M 268 (2006) Steuerung und Regelung der Stickstoffelimination beim Belebungsverfahren. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • Fux C, Boehler M, Huber P, Brunner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99(3):295–306

    Article  CAS  Google Scholar 

  • Grady CPL Jr, Daigger GT, Love NG, Filipe CDM (2011) Biological wastewater treatment, 3rd edn. IWA Publishing, Boca Raton

    Google Scholar 

  • Helmer-Madhok C, Schmid M, Filipov E, Gaul T, Hippen A, Rosenwinkel KH, …, Kunst S (2002) Deammonification in biofilm systems: population structure and function. Water Sci Technol 46(1–2):223–231

    Article  CAS  Google Scholar 

  • Innerebner G, Insam H, Franke-Whittle IH, Wett B (2007) Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation. Syst Appl Microbiol 30(5):408–412

    Article  CAS  Google Scholar 

  • Joss A, Wasserforschungs-institut, Das E, Mohn J, Eugster J, Roger KO, Fabijan P, Leumann S (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol 43:5301–5306

    Article  CAS  Google Scholar 

  • Kroiss H, Svardal K (1999) Analytical parameters for monitoring of used water treatment plants, Biotechnology Second, Completely Revised Edition H.-J. Rehm and G. Reed copyright WILEY-VCH Verlag GmbH. pp. 109–123

    Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences – an application survey. Water Res 55(0):292–303

    Article  CAS  Google Scholar 

  • Laureni M, Falås P, Robin O, Wick A, Weissbrodt DG, Nielsen JL, …, Joss A (2016) Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res 101:628–639

    Article  CAS  Google Scholar 

  • Metcalf & Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Metcalf & Eddy | AECOM (2014) Used water engineering, treatment and resource recovery, 5th edn. New York: McGraw-Hill Higher Education; London: McGraw-Hill [distributor]

    Google Scholar 

  • Mulder A, Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–184

    Article  CAS  Google Scholar 

  • Mulkerrins D, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewater. Environ Int 30(2004):249–259

    Article  CAS  Google Scholar 

  • Nelson MJ, Nakhla G, Zhu J (2017) Fluidized-bed bioreactor applications for biological wastewater treatment: a review of research and developments. Engineering 3(2017):330–342

    Article  Google Scholar 

  • Odegaard H, Rusten B, Siljudalen J. (1999) Development of the moving bed biofilm process-processes from idea to commercial product. Eur. Wat. Manage. 2:36–43

    CAS  Google Scholar 

  • Orhon D, Artan N (1994) Modelling of Activated Sludge Systems. Technomic Publishing Company, Inc., USA

    Google Scholar 

  • Pastorelli G, Canziani R, Pedrazzi L, Rozzi A (1999) Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Sci Technol 40(4–5):169–176

    Article  CAS  Google Scholar 

  • Riffat R (2013) Fundamentals of wastewater treatment and engineering. IWA Publishing, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL; IWA Publishing Alliance House, 12 Caxton Street, London SW1H 0QS, UK

    Google Scholar 

  • Rosenwinkel KH, Cornelius A (2005) Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content. Chem Eng Technol 28(1):49–52

    Article  CAS  Google Scholar 

  • Satoh H, Mino T, Matsuo T (1992) Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Sci Technol 26(5–6):933–942

    Article  CAS  Google Scholar 

  • Sedlak R (1991) Phosphorus and nitrogen removal from municipal wastewater, principle and practice, 2nd edn. The Soap and detergent Association, New York

    Google Scholar 

  • Strous M, Kuenen JG, Jetten MS (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65(7):3248–3250

    CAS  Google Scholar 

  • Sykes RM (2003) Biological wastewater treatment processes. The Ohio State University, CRC Press LLC

    Google Scholar 

  • US Environmental Protection Agency (EPA) (1993) Manual nitrogen control, EPA/625/R-93/010, Sept 1993

    Google Scholar 

  • Van Haandel AC, Lettinga G (1994) Anaerobic sewage treatment: a practical guide for regions with a hot climate. Wiley, Chichester

    Google Scholar 

  • Van Haandel AC, van der Lubbe J (2007) Handbook of biological wastewater treatment: design and optimisation of activated sludge systems. Quist Publishing, Leidschendam, The Nederlands

    Google Scholar 

  • Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162(1):1–20

    Article  CAS  Google Scholar 

  • von Sperling M (2007) Biological wastewater treatment series, vol. 2, basic principles of wastewater treatment. IWA Publishing, Alliance House, 12 Caxton Street, London SWIH 0QS, UK

    Google Scholar 

  • Wett B (2006) Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol 53(12):121–128

    Article  CAS  Google Scholar 

  • Wett B, Omari A, Podmirseg SM, Han M, Akintayo O, Gómez Brandón M, …, O’Shaughnessy M (2013) Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci Technol 68(2):283–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bogdanka Radetic or Claudio Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Radetic, B., Lehmann, C. (2018). Carbon, Nitrogen, and Phosphorous Removal, Basics and Overview of Technical Applications. In: Lahnsteiner, J. (eds) Handbook of Water and Used Water Purification. Springer, Cham. https://doi.org/10.1007/978-3-319-66382-1_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66382-1_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66382-1

  • Online ISBN: 978-3-319-66382-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics