Skip to main content

Cogeneration in Anaerobic Sludge Digestion, Biogas Pretreatment, Desulfurization, and Utilization

  • Living reference work entry
  • First Online:
Handbook of Water and Used Water Purification
  • 31 Accesses


Biogas produced as a by-product of anaerobic digestion in UWTPs contains 60–70% methane, 30–40% carbon dioxide, and 1–2% of small quantities of other impurities such as ammonia, halogenated organic compounds, hydrogen sulfide, siloxanes, and water vapor. With regard to further biogas utilization, methane is the most valuable component of biogas and can be utilized in cogeneration units. However, although the concentrations of impurities are relatively insignificant, they can have a negative effect upon the cogeneration unit and a varying level of biogas treatment is therefore required that matches the cogeneration technology used. The employment of cogeneration plant at UWTPs can provide an economic, efficient, and sustainable solution for their heat and power requirements. Nonetheless, while biogas utilization is promising from a carbon footprint perspective, challenges remain, due largely to the presence of impurities in the biogas. The most problematic contaminants are H2S, water vapor, and siloxanes, and a variety of methods for their removal are available. With the exception of biological H2S removal, all the other methods use physicochemical processes and in addition, there are many different cogeneration technologies for biogas utilization. This review demonstrates that internal combustion engines are by far the most frequently applied technology in the biogas utilization market, but from environmental perspective, some other techniques such as fuel cells and Stirling engines may become increasingly attractive in the future, as they have inherently low NOX, CO, and VOC emission profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others



Activated carbon


Combined heat and power


Carbon dioxide


Carbon monoxide




Greenhouse gas


Hydrogen sulfide


Internal combustion


Used water treatment plant


Nitrogen oxides


Carbon monoxide


Volatile organic compounds


  • Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas – a technology overview. Bioresour Technol 101:2913–2923

    Google Scholar 

  • Al-Shemmeri TT (2011) Thermodynamics, performance analysis and computational modelling of small and micro combined heat and power (CHP) systems. In: Small and micro combined heat and power (CHP) systems, Advanced design, performance, materials and applications. Woodhead Publishing Limited

    Google Scholar 

  • Arnold M (2009) Reduction and monitoring of biogas trace compounds. Research notes 2496 Espoo: VTT Tiedotteita

    Google Scholar 

  • AWEL (2009) Siloxane in der Umwelt und im Klärgas. Amt für Wasser, Energie und Luft (AWEL) der Baudirektion Kanton Zürich; Oktober 2009

    Google Scholar 

  • Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) (2013) Mass loading and fate of liner and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832

    Article  CAS  Google Scholar 

  • Breeze P (2018) Combined heat and power. Copyright © 2018 Elsevier Ltd. All rights reserved. ISBN: 978-0-12-812908-1

    Google Scholar 

  • Cabrera-Codony A (2016) Thesis Siloxane removal in the energy recovery of biogas: sequential adsorption/oxidation processes. University of Girona. (

    Google Scholar 

  • DBE & IS (2021) Combined heat and power – technologies, a detailed guide for CHP developers – Part 2.

  • Deublein D, Steinhauser A (eds) (2008) Biogas from waste and renewable resources: an introduction. WILEY-VCH, Weinheim

    Google Scholar 

  • Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Conversion and Management 47(13–14):1711–1722

    Article  CAS  Google Scholar 

  • DWA-M 361 (2011) Aufbereitung von Biogas. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • DWA-M 363 (2010) Herkunft, Aufbereitung und Verwertung von Biogasen. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • DWA-M 368 (2014) Biologische Stabilisierung von Klärschlamm. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • EBA (2020) Categorization of european biogas technologies. Digital Global Biogas Cooperation (DiBiCoo) BioGas_AD_Final.pdf (

    Google Scholar 

  • EBA (2021) Statistical report.

  • FNR (2012) Guide to biogas from production to use. Report, Publisher Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

  • Frey W (2011) Möglichkeiten der Faulgasverwertung auf Kläranlagen in: Informationsreihe Betriebspersonal Abwasseranlagen (Österreichischer Wasser- und Abfallwirtschaftsverband - ÖWAV). Österreichischer Wasser- und Abfallwirtschaftsverband – ÖWAV, Folge 19 (2011), ISBN: 978-3-902810-19-9; S. 123–142

    Google Scholar 

  • Hayes H.C., Graening G.J., Saeed S., Kao S. (2003) A summary of available analytical methods for the determination of siloxanes in biogas.

    Google Scholar 

  • IEA Bioenergy (2019) Best practise report on decentralized biomass fired CHP plants and status of biomass fired small- and micro scale CHP technologies. IEA Bioenergy: Task 32: February 2019

    Google Scholar 

  • Kaltschmitt M, Hartmann H (2009) Energie aus Biomasse Grundlagen. Springer-Verlag, Techniken und Verfahren

    Book  Google Scholar 

  • Kaparaju P, Rintala J (2013) Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells. In: The biogas handbook. Woodhead Publishing Limited

    Google Scholar 

  • Kazimierz G (2021) Siloxanes removal from biogas and emerging biological techniques. In: Emerging technologies and biological systems for biogas upgrading. Copyright © 2021 Elsevier Inc. All rights reserved

    Google Scholar 

  • Kirchmeyr F, Stürmer B, Hofmann F, Decorte M, Sainz Arnau A (2020) Categorization of European biogas technologies.

    Google Scholar 

  • Kuenen JG (1975) Colourless sulfur bacteria and their role in the sulfur cycle. Plant and Soil 43:49–76

    Article  CAS  Google Scholar 

  • Lindtner S, Hnatek V (2020) In: Kanal- und Kläranlagen-Nachbarschaften 2020. Informationsreihe Betriebspersonal Abwasseranlagen, Folge 28. ÖWAV, Wien, 2020

    Google Scholar 

  • Maraver D et al (2013) Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Appl Energy 102:1303–1313

    Article  Google Scholar 

  • Melinger-Cohen A, Conger G, Lema G (2014) Integrating combined heat and power systems at wastewater treatment plants. Final report on ME 395 Energy Systems Project, Northwestern University, McCormick School of Engineering, USA, Winter 2014

    Google Scholar 

  • Nyamukamba P, Mukumba P, Chikukwa ES, Makaka G (2020) Biogas upgrading approaches with special focus on siloxane removal – a review. Energies 2020. 13

    Google Scholar 

  • Petersson A (2013) Biogas cleaning. In: The biogas handbook, © Woodhead Publishing Limited, 2013

    Google Scholar 

  • Petrescu FIT (2018) Contributions to the Stirling engine study. Am J Eng Appl Sci 11(4):1258–1292.

    Article  Google Scholar 

  • Pourmovahed A, Opperman A, Lemk A (2011) Performance and efficiency of a biogas CHP system utilizing a Stirling engine. In: International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2011.

    Chapter  Google Scholar 

  • Riley DM, Tian J, Güngör-Demirci G, Phelan P, Villalobos JR, Milcarek RJ (2020) Techno-economic assessment of CHP systems in wastewater treatment plants. Environments 7:74.

    Article  Google Scholar 

  • Salomón M et al (2011) Renewable and Sustainable Energy Reviews 15(2011):4451–4465. Small-scale biomass CHP plants in Sweden and Finland; Elsevier 2011

    Article  Google Scholar 

  • Scholz V, Schmersahl R, Ellner J (2008) Effiziente Aufbereitung von Biogas zur Verstromung in PEM-Brennstoffzellen

    Google Scholar 

  • Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater 83:183–196.

  • Shen M, Zhang Y, Hu D, Fan J, Zeng G (2018) A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes. Environ Sci Pollut Res 25:30847–30862

    Article  CAS  Google Scholar 

  • Soreanu G, Beland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas: a review. Can Biosyst Eng 2011(53):8.1–8.18

    Google Scholar 

  • Trendewicz AA, Braun RJ (2013) Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J Power Sources 233:380–393

    Article  CAS  Google Scholar 

  • US DOE (2016) Combined heat and power technology fact sheet series. Fuel Cells. Fuel Cells (DOE CHP Technology Fact Sheet Series) – Fact Sheet, 2016 | Department of Energy. Last time accessed 15 October 2022

    Google Scholar 

  • U.S. DOE (2019) Characterization of CHP Opportunities at U.S. Wastewater Treatment Plants April 2019. U.S. Department of Energy Accessed in February 2022

  • U.S. EPA (2006) Energy conservation-wastewater management fact sheet. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • U.S. EPA (2011) Opportunities for combined heat and power at wastewater treatment facilities: market analysis and lessons from the field. October 2011.

  • U.S.DOE (2017a) Overview of CHP Technologies (DOE CHP Technology Fact Sheet Series) – Fact Sheet, 2017. Last time accessed 20 May 2022

  • U.S.DOE (2017b) Combined heat and power technology fact sheet series. Last time accessed 20 May 2022

  • Wason SK (2006) Cogeneration technologies, trends for wastewater treatment facilities. WaterWorld, vol 22, issue 6. Accessed 4 Mar 2022

  • WEF (Water Environment Federation) (2010) WEF Manual of Practice No. 8, Design of municipal Wastewater Treatment Plants fifth edition, Volume 1: Planning and Configuration of Wastewater Treatment Pants, Chapter 23 Solids Thickening

    Google Scholar 

  • WEF (2017) Combined Heat and Power - Internal Combustion Engines. Copyright © 2017 Water Environment Federation. All Rights Reserved. WSEC-2017-TR-002, RBC Bioenergy Technology Subcommittee, CHP Task Force

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Radetic, B. (2022). Cogeneration in Anaerobic Sludge Digestion, Biogas Pretreatment, Desulfurization, and Utilization. In: Lahnsteiner, J. (eds) Handbook of Water and Used Water Purification. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66382-1

  • Online ISBN: 978-3-319-66382-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics