Myeloid-Derived Suppressor Cells in Aged Humans

  • Michael J. Rauh
  • Elina K. Cook
  • Dawn M.E. Bowdish
Living reference work entry


Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells whose immunosuppressive activities contribute to cancer and other diseases. MDSCs appear to increase with age, and this presumably contributes to immunosuppression and the increased incidence of certain diseases. Why MDSCs increase with age is not entirely clear. Herein we present evidence that MDSC expansion is due in part to age-related changes in hematopoiesis, including the acquisition of mutations that favor myelopoiesis, which are compounded by changes in the aging microenvironment that favor the production of MDSCs.


Immunosenescence Myeloid-derived suppressor cells Inflammation Myelodysplastic disorders Myelopoiesis 


  1. Abdelmagid SM, Barbe MF, Safadi FF (2015) Role of inflammation in the aging bones. Life Sci 123:25–34CrossRefPubMedGoogle Scholar
  2. Bandow K et al (2010) Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 402(4):755–761CrossRefPubMedGoogle Scholar
  3. Beerman I et al (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bellamy WT et al (2001) Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97(5):1427–1434CrossRefPubMedGoogle Scholar
  5. Bronte V et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737PubMedPubMedCentralGoogle Scholar
  6. Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150Google Scholar
  7. Brusnahan SK et al (2010) Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines. Mech Ageing Dev 131(11–12):718–722CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bunt SK et al (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176(1):284–290CrossRefPubMedGoogle Scholar
  9. Busque L et al (1996) Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88(1):59–65PubMedGoogle Scholar
  10. Busque L et al (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44(11):1179–1181CrossRefPubMedPubMedCentralGoogle Scholar
  11. Challen GA et al (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6(3):265–278CrossRefPubMedPubMedCentralGoogle Scholar
  12. Challen GA et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31CrossRefGoogle Scholar
  13. Chen X et al (2013) Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 123(11):4595–4611CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cull AH et al (2017) Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol. pii:S0301-472X(17)30716-6. doi: 10.1016/j.exphem.2017.08.001Google Scholar
  16. De Luca K et al (2009) The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23(11):2063–2074CrossRefPubMedGoogle Scholar
  17. Farha MA et al (2013) Collapsing the proton motive force to identify synergistic combinations against Staphylococcus Aureus. Chem Biol 20(9):1168–1178CrossRefPubMedGoogle Scholar
  18. Fleischman AG et al (2011) TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 118(24):6392–6398CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gale RE et al (1997) Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol 98(3):512–519CrossRefPubMedGoogle Scholar
  20. Garcia-Manero G (2007) Modifying the epigenome as a therapeutic strategy in myelodysplasia. Hematology Am Soc Hematol Educ Program 2007:405–411Google Scholar
  21. Genovese G et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giallongo C et al (2014) Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients. PLoS One 9(7):e101848CrossRefPubMedPubMedCentralGoogle Scholar
  23. Helgadottir A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493CrossRefPubMedGoogle Scholar
  24. Huang Y et al (2007) Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110(2):624–631CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498CrossRefPubMedPubMedCentralGoogle Scholar
  26. Janssen JW et al (1989) Clonal analysis of myelodysplastic syndromes: evidence of multipotent stem cell origin. Blood 73(1):248–254PubMedGoogle Scholar
  27. Kittang AO et al (2016) Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology 5(2):e1062208CrossRefPubMedGoogle Scholar
  28. Kollman C et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051CrossRefPubMedGoogle Scholar
  29. Laurie CC et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642–650CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li J et al (2007) TNF-alpha induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest 117(11):3283–3295CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li X et al (2016) Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol 17(7):806–815CrossRefPubMedGoogle Scholar
  32. Loukov D et al (2016) Tumor necrosis factor drives increased splenic monopoiesis in old mice. J Leukoc Biol 100(1):121–129CrossRefPubMedGoogle Scholar
  33. Lu T et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029CrossRefPubMedPubMedCentralGoogle Scholar
  34. Matheu A et al (2009) Anti-aging activity of the Ink4/Arf locus. Aging Cell 8(2):152–161CrossRefPubMedGoogle Scholar
  35. McKerrell T, Vassiliou GS (2015) Aging as a driver of leukemogenesis. Sci Transl Med 7(306):306fs38CrossRefPubMedPubMedCentralGoogle Scholar
  36. McKerrell T et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10(8):1239–1245CrossRefPubMedPubMedCentralGoogle Scholar
  37. McPherson R et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491CrossRefPubMedPubMedCentralGoogle Scholar
  38. Melzer D et al (2007) A common variant of the p16(INK4a) genetic region is associated with physical function in older people. Mech Ageing Dev 128(5–6):370–377CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mirza N et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66(18):9299–9307CrossRefPubMedPubMedCentralGoogle Scholar
  40. Movahedi K et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244CrossRefPubMedGoogle Scholar
  41. Nagaraj S, Youn JI, Gabrilovich DI (2013) Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol 191(1):17–23CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nefedova Y et al (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67(22):11021–11028CrossRefPubMedGoogle Scholar
  43. Pang WW et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108(50):20012–20017CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pinto A et al (1984) 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 64(4):922–929PubMedGoogle Scholar
  45. Pinto A et al (1989) 5-Aza-2′-deoxycytidine as a differentiation inducer in acute myeloid leukaemias and myelodysplastic syndromes of the elderly. Bone Marrow Transplant 4(Suppl 3):28–32PubMedGoogle Scholar
  46. Pu S et al (2016) Identification of early myeloid progenitors as immunosuppressive cells. Sci Rep 6:23115CrossRefPubMedPubMedCentralGoogle Scholar
  47. Puchta A et al (2016) TNF drives monocyte dysfunction with age and results in impaired anti-pneumococcal immunity. PLoS Pathog 12(1):e1005368CrossRefPubMedPubMedCentralGoogle Scholar
  48. Raskind WH et al (1984) Evidence for a multistep pathogenesis of a myelodysplastic syndrome. Blood 63(6):1318–1323PubMedGoogle Scholar
  49. Rodriguez PC et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rossi DJ et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sade-Feldman M et al (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38(3):541–554CrossRefPubMedGoogle Scholar
  52. Saxena R et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336CrossRefPubMedGoogle Scholar
  53. Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shlush LI et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488):328–333CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shlush LI et al (2015) Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int J Hematol 102(5):513–522CrossRefPubMedGoogle Scholar
  56. Sinha P et al (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513CrossRefPubMedGoogle Scholar
  57. Snoeck HW (2013) Aging of the hematopoietic system. Curr Opin Hematol 20(4):355–361CrossRefPubMedGoogle Scholar
  58. Solito S et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265CrossRefPubMedPubMedCentralGoogle Scholar
  59. Steensma DP et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126(1):9–16CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sun H et al (2015) Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia. Int J Hematol 102(5):579–586CrossRefPubMedGoogle Scholar
  61. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752CrossRefPubMedPubMedCentralGoogle Scholar
  62. Verschoor CP et al (2015a) Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanced-age, frail elderly. Mol Immunol 65(1):148–156CrossRefPubMedGoogle Scholar
  63. Verschoor CP et al (2015b) Circulating muramyl dipeptide is negatively associated with interleukin-10 in the frail elderly. Inflammation 38(1):272–277CrossRefPubMedGoogle Scholar
  64. Wang J, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536CrossRefPubMedGoogle Scholar
  65. Wang JC et al (2016) Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 43:39–43CrossRefPubMedGoogle Scholar
  66. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678CrossRefGoogle Scholar
  67. Xie M et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yahata T et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950CrossRefPubMedGoogle Scholar
  69. Youn JI et al (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181CrossRefPubMedPubMedCentralGoogle Scholar
  70. Youn JI et al (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211–220CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zeggini E et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang Q et al (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525(7569):389–393CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael J. Rauh
    • 1
  • Elina K. Cook
    • 1
    • 2
  • Dawn M.E. Bowdish
    • 3
    • 4
  1. 1.Department of Pathology and Molecular Medicine, Richardson LaboratoryQueen’s UniversityKingstonCanada
  2. 2.School of Medicine, Faculty of Health SciencesQueen’s UniversityKingstonCanada
  3. 3.McMaster Immunology Research CentreHamiltonCanada
  4. 4.M.G. DeGroote Institute for Infectious Disease ResearchHamiltonCanada

Section editors and affiliations

  • Tamas Fulop
    • 1
  1. 1.Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of MedicineUniversity of SherbrookeSherbrookeCanada

Personalised recommendations