Study of T Cell Immunosenescence in Various Tissue Compartments

  • Michelle Miron
  • Joseph J. C. Thome
  • Claire L. Gordon
  • Donna L. Farber
Living reference work entry

Abstract

Age-associated changes in the human immune response are largely attributed to alterations in T cell function and maintenance; however, most studies of human immunosenescence derive from the sampling of human blood, while the majority of T cells are noncirculating and reside in tissue sites. Discussed in this chapter is how human T cell development, differentiation, and maintenance are highly compartmentalized in distinct tissue sites: T cell development occurs in the thymus, new thymic emigrants populate lymphoid sites where they are initially primed. Activated T cells subsequently leave lymphoid tissue and migrate to mucosal and other peripheral tissues, and specific memory T cell subsets migrate through circulation, lymphoid, and/or peripheral tissues, or take up residence in multiple sites. Throughout life, each type of tissue site exhibits distinct kinetics and qualitative changes with age, with the extent of T cell aging related to the specific anatomic location. These site-specific effects of age on the T cell response have important implications for understanding changes in the immune response to infections and vaccination with age, and how persistent infections can impact T cell homeostasis in tissues with aging.

Keywords

T cells Aging Lymphoid tissue Mucosal tissues Thymus Bone marrow Infection Vaccination Immunotherapy 

References

  1. Aggarwal S, Gupta S (1998) Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol 160(4):1627–1637PubMedGoogle Scholar
  2. Agius E, Lacy KE, Vukmanovic-Stejic M, Jagger AL, Papageorgiou AP, Hall S, Reed JR, Curnow SJ, Fuentes-Duculan J, Buckley CD, Salmon M, Taams LS, Krueger J, Greenwood J, Klein N, Rustin MH, Akbar AN (2009) Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. J Exp Med 206(9):1929–1940PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmadi O, McCall JL, Stringer MD (2013) Does senescence affect lymph node number and morphology? A systematic review. ANZ J Surg 83(9):612–618PubMedCrossRefGoogle Scholar
  4. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9(1):209–222PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arens R, Remmerswaal EB, Bosch JA, van Lier RA (2015) 5(th) international workshop on CMV and immunosenescence – a shadow of cytomegalovirus infection on immunological memory. Eur J Immunol 45(4):954–957PubMedCrossRefGoogle Scholar
  6. Aw D, Palmer DB (2011) The origin and implication of thymic involution. Aging Dis 2(5):437–443PubMedPubMedCentralGoogle Scholar
  7. Berent-Maoz B, Montecino-Rodriguez E, Dorshkind K (2012) Genetic regulation of thymocyte progenitor aging. Semin Immunol 24(5):303–308PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergler W, Adam S, Gross HJ, Hormann K, Schwartz-Albiez R (1999) Age-dependent altered proportions in subpopulations of tonsillar lymphocytes. Clin Exp Immunol 116(1):9–18PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bingaman AW, Patke DS, Mane VR, Ahmadzadeh M, Ndejembi M, Bartlett ST, Farber DL (2005) Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. Eur J Immunol 35:3173–3186PubMedCrossRefGoogle Scholar
  10. Burzyn D, Benoist C, Mathis D (2013a) Regulatory T cells in nonlymphoid tissues. Nat Immunol 14(10):1007–1013PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013b) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19(9):1680–1698PubMedPubMedCentralGoogle Scholar
  13. Clark RA (2015) Resident memory T cells in human health and disease. Sci Transl Med 7(269):269rv261CrossRefGoogle Scholar
  14. Cossarizza A, Ortolani C, Paganelli R, Barbieri D, Monti D, Sansoni P, Fagiolo U, Castellani G, Bersani F, Londei M, Franceschi C (1996) CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech Ageing Dev 86(3):173–195PubMedCrossRefGoogle Scholar
  15. De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87PubMedPubMedCentralCrossRefGoogle Scholar
  16. de Bree GJ, van Leeuwen EM, Out TA, Jansen HM, Jonkers RE, van Lier RA (2005) Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J Exp Med 202(10):1433–1442PubMedPubMedCentralCrossRefGoogle Scholar
  17. de Bree GJ, Daniels H, Schilfgaarde M, Jansen HM, Out TA, van Lier RA, Jonkers RE (2007) Characterization of CD4+ memory T cell responses directed against common respiratory pathogens in peripheral blood and lung. J Infect Dis 195(11):1718–1725PubMedCrossRefGoogle Scholar
  18. Decman V, Laidlaw BJ, Dimenna LJ, Abdulla S, Mozdzanowska K, Erikson J, Ertl HC, Wherry EJ (2010) Cell-intrinsic defects in the proliferative response of antiviral memory CD8 T cells in aged mice upon secondary infection. J Immunol 184(9):5151–5159PubMedCrossRefGoogle Scholar
  19. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AF, Ackermans MT, Miedema F, Borghans JA, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297CrossRefGoogle Scholar
  20. Di Benedetto S, Derhovanessian E, Steinhagen-Thiessen E, Goldeck D, Muller L, Pawelec G (2015) Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16(5):631–643PubMedCrossRefGoogle Scholar
  21. Effros RB (2007) Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25(4):599–604PubMedCrossRefGoogle Scholar
  22. Evans CJ, Ho Y, Daveson BA, Hall S, Higginson IJ, Gao W, project GUC (2014) Place and cause of death in centenarians: a population-based observational study in England, 2001 to 2010. PLoS Med 11(6):e1001653PubMedPubMedCentralCrossRefGoogle Scholar
  23. Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35PubMedCrossRefGoogle Scholar
  24. Fehervari Z, Sakaguchi S (2004) CD4+ Tregs and immune control. J Clin Invest 114(9):1209–1217PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRefGoogle Scholar
  26. Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, Vassiliadi DA, Douka E, Tsaousi S, Gennimata V, Ilias I, Nikitas N, Armaganidis A, Karakitsos P, Papaevangelou V, Dimopoulou I (2015) Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care 30(2):276–281PubMedCrossRefGoogle Scholar
  27. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, Kidd BA, Maecker HT, Concannon P, Dekker CL, Thomas PG, Davis MM (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7(281):281ra243CrossRefGoogle Scholar
  28. Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28(12):514–518PubMedCrossRefGoogle Scholar
  29. Goodrum F, Caviness K, Zagallo P (2012) Human cytomegalovirus persistence. Cell Microbiol 14(5):644–655PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gordon CL, Miron M, Thome JJC, Matsuoka N, Weiner J, Rak M, Igarashi S, Granot T, Lerner H, Goodrum F, Farber DL (2017) Tissue-reservoirs of anti-viral T cell immunity in persistent human CMV infection. J Exp Med 214(3):651–667PubMedPubMedCentralGoogle Scholar
  31. Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22(6):816–827PubMedCrossRefGoogle Scholar
  32. Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194(9):4073–4080PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hadamitzky C, Spohr H, Debertin AS, Guddat S, Tsokos M, Pabst R (2010) Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance? J Anat 216(5):556–562PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9(9):1131–1137PubMedCrossRefGoogle Scholar
  35. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ (2001) T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med 79(11):631–640PubMedCrossRefGoogle Scholar
  36. Heetun Z, Doherty GA (2012) Restoring the regulatory regime in IBD: do anti-TNF agents rescue Treg? Inflamm Bowel Dis 18(6):1186–1187PubMedCrossRefGoogle Scholar
  37. Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK (2012) Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 136(2):115–122PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jenkinson WE, Bacon A, White AJ, Anderson G, Jenkinson EJ (2008) An epithelial progenitor pool regulates thymus growth. J Immunol 181(9):6101–6108PubMedCrossRefGoogle Scholar
  39. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS (2012) Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483(7388):227–231PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kato H, Fujihashi K, Kato R, Dohi T, Fujihashi K, Hagiwara Y, Kataoka K, Kobayashi R, McGhee JR (2003) Lack of oral tolerance in aging is due to sequential loss of Peyer’s patch cell interactions. Int Immunol 15(2):145–158PubMedCrossRefGoogle Scholar
  41. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, Senda T, Ho SH, Lerner H, Friedman AL, Shen, Y, and Farber, DL (2017) Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Reports 20(12):2921–2934Google Scholar
  42. Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B (2005) Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 114(1):37–43PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lefebvre JS, Masters AR, Hopkins JW, Haynes L (2016) Age-related impairment of humoral response to influenza is associated with changes in antigen specific T follicular helper cell responses. Sci Rep 6:25051PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS (2015) Aging and the mucosal immune system in the intestine. Biogerontology 16(2):133–145PubMedCrossRefGoogle Scholar
  45. Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, Griffin GE, Beverley PC, Tough DF (2004) Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med 200(2):255–260PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, Heath WR, Carbone FR, Gebhardt T (2012) Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci USA 109(18):7037–7042PubMedPubMedCentralCrossRefGoogle Scholar
  47. Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512):2413–2417PubMedCrossRefGoogle Scholar
  48. Masopust D, Vezys V, Usherwood EJ, Cauley LS, Olson S, Marzo AL, Ward RL, Woodland DL, Lefrancois L (2004) Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol 172(8):4875–4882PubMedCrossRefGoogle Scholar
  49. Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, Wang J, Casey KA, Barber DL, Kawamura KS, Fraser KA, Webby RJ, Brinkmann V, Butcher EC, Newell KA, Ahmed R (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207(3):553–564PubMedPubMedCentralCrossRefGoogle Scholar
  50. McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, Ewen C, Kane KP, Bleackley RC (2006) T cell responses are better correlates of vaccine protection in the elderly. J Immunol 176(10):6333–6339PubMedCrossRefGoogle Scholar
  51. Miller RA (1996) The aging immune system: primer and prospectus. Science 273(July 5):70–74PubMedCrossRefGoogle Scholar
  52. Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA (2008) Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 111(11):5359–5370PubMedCrossRefGoogle Scholar
  53. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161PubMedCrossRefGoogle Scholar
  55. Nutsch KM, Hsieh CS (2012) T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol 24(4):385–391PubMedPubMedCentralCrossRefGoogle Scholar
  56. Okhrimenko A, Grun JR, Westendorf K, Fang Z, Reinke S, Roth P v, Wassilew G, Kuhl AA, Kudernatsch R, Demski S, Scheibenbogen C, Tokoyoda K, McGrath MA, Raftery MJ, Schonrich G, Serra A, Chang HD, Radbruch A, Dong J (2014) Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci USA 111(25):9229–9234PubMedPubMedCentralCrossRefGoogle Scholar
  57. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108(50):20012–20017PubMedPubMedCentralCrossRefGoogle Scholar
  58. Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, Griffiths M, Pratt G, Moss P (2016) Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing 13:1PubMedPubMedCentralCrossRefGoogle Scholar
  59. Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC (2015) Inducing and administering Tregs to treat human disease. Front Immunol 6:654PubMedGoogle Scholar
  60. Pesenacker AM, Broady R, Levings MK (2014) Control of tissue-localized immune responses by human regulatory T cells. Eur J Immunol 45(2):333–343PubMedCrossRefGoogle Scholar
  61. Petrie JG, Cheng C, Malosh RE, VanWormer JJ, Flannery B, Zimmerman RK, Gaglani M, Jackson ML, King JP, Nowalk MP, Benoit J, Robertson A, Thaker SN, Monto AS, Ohmit SE (2016) Illness severity and work productivity loss among working adults with medically attended acute respiratory illnesses: US influenza vaccine effectiveness network 2012-2013. Clin Infect Dis 62(4):448–455PubMedGoogle Scholar
  62. Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EB, Thusen JH v d, van Haarst JM, Eerenberg JP, ten Brinke A, van der Bij W, Timens W, van Lier RA, Jonkers RE (2011) CD8(+) T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J Clin Invest 121(6):2254–2263PubMedPubMedCentralCrossRefGoogle Scholar
  63. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188(6):1047–1054PubMedPubMedCentralCrossRefGoogle Scholar
  64. Poole E, Juss JK, Krishna B, Herre J, Chilvers ER, Sinclair J (2015) Alveolar macrophages isolated directly from human cytomegalovirus (HCMV)-seropositive individuals are sites of HCMV reactivation in vivo. J Infect Dis 211(12):1936–1942PubMedCrossRefGoogle Scholar
  65. Pulko V, Davies JS, Martinez C, Lanteri MC, Busch MP, Diamond MS, Knox K, Bush EC, Sims PA, Sinari S, Billheimer D, Haddad EK, Murray KO, Wertheimer AM, Nikolich-Zugich J (2016) Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol 17(8):966–975PubMedPubMedCentralCrossRefGoogle Scholar
  66. Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One 6(1):e16245PubMedPubMedCentralCrossRefGoogle Scholar
  67. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111(36):13139–13144PubMedPubMedCentralCrossRefGoogle Scholar
  68. Reis MD, Csomos K, Dias LP, Prodan Z, Szerafin T, Savino W, Takacs L (2015) Decline of FOXN1 gene expression in human thymus correlates with age: possible epigenetic regulation. Immun Ageing 12:18PubMedPubMedCentralCrossRefGoogle Scholar
  69. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257(5067):238–241PubMedCrossRefGoogle Scholar
  70. Robins H (2013) Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin Immunol 25(5):646–652PubMedCrossRefGoogle Scholar
  71. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL (2007) Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6(19):2371–2376PubMedCrossRefGoogle Scholar
  72. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10(7):490–500PubMedCrossRefGoogle Scholar
  73. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, Barber DL (2014) Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192(7):2965–2969PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 401(6754):708–712PubMedCrossRefGoogle Scholar
  75. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197PubMedCrossRefGoogle Scholar
  76. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint JP, Labalette M (2006) Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev 127(3):274–281PubMedCrossRefGoogle Scholar
  77. Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41(6):886–897PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schenkel JM, Fraser KA, Vezys V, Masopust D (2013) Sensing and alarm function of resident memory CD8 T cells. Nat Immunol 14:509–513PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schwab R, Szabo P, Manavalan JS, Weksler ME, Posnett DN, Pannetier C, Kourilsky P, Even J (1997) Expanded CD4+ and CD8+ T cell clones in elderly humans. J Immunol 158(9):4493–4499PubMedGoogle Scholar
  80. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164(4):2180–2187PubMedCrossRefGoogle Scholar
  81. Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491(7424):463–467PubMedPubMedCentralCrossRefGoogle Scholar
  82. Smyth LJ, Eustace A, Kolsum U, Blaikely J, Singh D (2010) Increased airway T regulatory cells in asthmatic subjects. Chest 138(4):905–912PubMedCrossRefGoogle Scholar
  83. Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88PubMedCrossRefGoogle Scholar
  84. Strauch UG, Mueller RC, Li XY, Cernadas M, Higgins JM, Binion DG, Parker CM (2001) Integrin alpha E(CD103)beta 7 mediates adhesion to intestinal microvascular endothelial cell lines via an E-cadherin-independent interaction. J Immunol 166(5):3506–3514PubMedCrossRefGoogle Scholar
  85. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685PubMedPubMedCentralCrossRefGoogle Scholar
  86. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93PubMedCrossRefGoogle Scholar
  87. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL (2011) Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J Immunol 187(11):5510–5514PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thom JT, Oxenius A (2016) Tissue-resident memory T cells in cytomegalovirus infection. Curr Opin Virol 16:63–69PubMedCrossRefGoogle Scholar
  89. Thome JJ, Farber DL (2015) Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol 36(7):428–435PubMedPubMedCentralCrossRefGoogle Scholar
  90. Thome JJC, Yudanin NA, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, Kato T, Lerner H, Shen Y, Farber DL (2014) Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159:814–828PubMedPubMedCentralCrossRefGoogle Scholar
  91. Thome JJ, Bickham KL, Ohmura Y, Kubota M, Matsuoka N, Gordon C, Granot T, Griesemer A, Lerner H, Kato T, Farber DL (2016a) Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat Med 22(1):72–77PubMedCrossRefGoogle Scholar
  92. Thome JJC, Grinshpun B, Kumar BV, Kubota M, Ohmura Y, Lerner H, Sempowski GD, Shen Y, Farber DL (2016b) Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol 1:eaah6506PubMedPubMedCentralCrossRefGoogle Scholar
  93. Toapanta FR, Ross TM (2009) Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 10:112PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grun JR, Lohning M, Radbruch A (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30(5):721–730PubMedCrossRefGoogle Scholar
  95. Turner DL, Farber DL (2014) Mucosal resident memory CD4 T cells in protection and immunopathology. Front Immunol 5:331PubMedPubMedCentralCrossRefGoogle Scholar
  96. Turner DL, Bickham KL, Thome JJ, Kim CY, D'Ovidio F, Wherry EJ, Farber DL (2014a) Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 7(3):501–510PubMedCrossRefGoogle Scholar
  97. Turner DL, Gordon CL, Farber DL (2014b) Tissue-resident T cells, in situ immunity and transplantation. Immunol Rev 258(1):150–166PubMedCrossRefGoogle Scholar
  98. Vescovini R, Biasini C, Fagnoni FF, Telera AR, Zanlari L, Pedrazzoni M, Bucci L, Monti D, Medici MC, Chezzi C, Franceschi C, Sansoni P (2007) Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol 179(6):4283–4291PubMedCrossRefGoogle Scholar
  99. Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA 107(42):17872–17879PubMedPubMedCentralCrossRefGoogle Scholar
  100. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, Elco CP, Huang V, Matos TR, Kupper TS, Clark RA (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7(279):279ra239CrossRefGoogle Scholar
  101. Weng NP, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA 92(24):11091–11094PubMedPubMedCentralCrossRefGoogle Scholar
  102. Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30(7):306–312PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95(2):215–224PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang L, Yang XQ, Cheng J, Hui RS, Gao TW (2010) Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol 135(1):108–117PubMedCrossRefGoogle Scholar
  105. Zhao L, Sun L, Wang H, Ma H, Liu G, Zhao Y (2007) Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol 81(6):1386–1394PubMedCrossRefGoogle Scholar
  106. Zhou X, McElhaney JE (2011) Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine 29(11):2169–2177PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michelle Miron
    • 1
    • 2
  • Joseph J. C. Thome
    • 1
    • 2
  • Claire L. Gordon
    • 1
    • 4
  • Donna L. Farber
    • 1
    • 2
    • 3
  1. 1.Columbia Center for Translational ImmunologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Microbiology and ImmunologyColumbia University Medical CenterNew YorkUSA
  3. 3.Department of SurgeryColumbia University Medical CenterNew YorkUSA
  4. 4.Department of MedicineColumbia University Medical CenterNew YorkUSA

Section editors and affiliations

  • Tamas Fulop
    • 1
  1. 1.Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of MedicineUniversity of SherbrookeSherbrookeCanada

Personalised recommendations