The “Inner Tube of Life”: How Does the Gastrointestinal Tract Age?

  • Claudio Nicoletti
  • Massimo Gulisano
Living reference work entry


The gastrointestinal (GI) tract is the primary and largest area of contact with environmental factors and antigens, and it contains the largest number of immune cells in the body. The intestinal barrier is integral to GI-defense in preventing or limiting exposure of the host and its immune system to luminal antigens. One of the main consequences of this is that such a vast mucosal surface of the intestine requires constant and effective patrolling by a large number of lymphocytes forming the intestinal immune system. Recent advance in the field suggested that alterations of the intestinal epithelial barrier, including its associated immune system, are linked to both local and systemic disorders of various natures. However, like any other system in the body, the various components of the intestinal epithelial barrier, including the immune system deteriorate with the advancing of age; therefore, the identification of the events underlying the ageing process in the gut might have important consequences on health and well-being far beyond the GI-tract. In spite of its critical role in maintaining health, up to date very little attention has been given to how ageing affects this critical structure; as a result, our knowledge on the effects of ageing on the physical and immunological properties of the intestinal epithelial barrier is still poor. This chapter describes the impact of ageing on the highly integrated components of the intestinal epithelial barrier; also, the possibility to devise novel strategies to achieve a healthier ageing by targeting the GI-tract is discussed.


Ageing Intestine, gut epithelium Mucosal immunity Microbiota Gut-brain axis 



We wish to thank Angela Man, Kamal Ivory, Monica Maijo, Nadia Gicheva, and Adriaan van Beek for their valuable help. Also, I am grateful to Mari Regoli and Eugenio Bertelli for their fruitful collaboration, Arjan Narbad and Nathalie Juge for their insightful scientific discussions, and Simon Deakin and Paul Pople for their technical help and computer art work, respectively.


  1. Agace WW, Persson EK (2012) How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends Immunol 33:42–48CrossRefPubMedGoogle Scholar
  2. Ahmad OF, Akbar A (2015) Dietary treatment of irritable bowel syndrome. Br Med Bull 113:83–90CrossRefPubMedGoogle Scholar
  3. Al-Sadi R, Ye D, Said HM, Ma TY (2010) IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol 177:2310–2322CrossRefPubMedCentralPubMedGoogle Scholar
  4. Aroniadis OC, Brandt LJ (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29:79–84CrossRefPubMedGoogle Scholar
  5. Arranz E, O’Mahony S, Barton JR, Ferguson A (1992) Immunosenescence and mucosal immunity: significant effects of old age on secretory IgA concentrations and intraepithelial lymphocyte counts. Gut 33:882–886CrossRefPubMedCentralPubMedGoogle Scholar
  6. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5:427. Scholar
  7. Asahi Y, Yoshikawa T, Watanabe I, Iwasaki T, Hasegawa H, Sato Y, Shimada S, Nanno M, Matsuoka Y, Ohwaki M, Iwakura Y, Suzuki Y, Aizawa C, Sata T, Kurata T, Tamura S (2002) Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J Immunol 168:2930–2938CrossRefPubMedGoogle Scholar
  8. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609. e591–593CrossRefPubMedGoogle Scholar
  9. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368CrossRefPubMedGoogle Scholar
  10. Brandtzaeg P, Kiyono H, Pabst R, Russell MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1:31–37CrossRefPubMedGoogle Scholar
  11. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055CrossRefPubMedCentralPubMedGoogle Scholar
  12. Castaneda-Delgado JE, Miranda-Castro NY, Gonzalez-Amaro R, Gonzalez-Curiel I, Montoya-Rosales A, Rivas-Calderon B, Rivas-Santiago B (2013) Production of antimicrobial peptides is preserved in aging. Clin Immunol 148:198–205CrossRefPubMedGoogle Scholar
  13. Cazac BB, Roes J (2000) TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:443–451CrossRefPubMedGoogle Scholar
  14. Cha HR, Chang SY, Chang JH, Kim JO, Yang JY, Kim CH, Kweon MN (2010) Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J Immunol 184:6799–6806CrossRefPubMedGoogle Scholar
  15. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593CrossRefPubMedCentralPubMedGoogle Scholar
  16. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591CrossRefPubMedGoogle Scholar
  17. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–462CrossRefPubMedCentralPubMedGoogle Scholar
  18. Cracknell R (2010) The aging population. In: Mellows-Facer A (ed) Key issues for the new parliament 2010: House of Commons Library research. House of Commons Library, LondonGoogle Scholar
  19. Craig SW, Cebra JJ (1971) Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134:188–200CrossRefPubMedCentralPubMedGoogle Scholar
  20. Elphick DA, Mahida YR (2005) Paneth cells: their role in innate immunity and inflammatory disease. Gut 54:1802–1809CrossRefPubMedCentralPubMedGoogle Scholar
  21. Etzold S, Kober OI, Mackenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N (2013) Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol 16:888–903CrossRefGoogle Scholar
  22. Feart C, Pallet V, Boucheron C, Higueret D, Alfos S, Letenneur L, Dartigues JF, Higueret P (2015) Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur J Endocrinol 152:449–458CrossRefGoogle Scholar
  23. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6:e28032CrossRefPubMedCentralPubMedGoogle Scholar
  24. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254CrossRefPubMedGoogle Scholar
  25. Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 91:6688–6692CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fulton JR, Cuff CF (2004) Mucosal and systemic immunity to intestinal reovirus infection in aged mice. Exp Gerontol 39:1285–1294CrossRefPubMedGoogle Scholar
  27. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28:514–518CrossRefPubMedGoogle Scholar
  29. Haq JA, Szewczuk MR (1991) Differential effect of aging on B-cell immune responses to cholera toxin in the inductive and effector sites of the mucosal immune system. Infect Immun 59:3094–3100PubMedCentralPubMedGoogle Scholar
  30. Hausmann M (2010) How bacteria-induced apoptosis of intestinal epithelial cells contributes to mucosal inflammation. Int J Inflam.
  31. He F, Ouwehand AC, Isolauri E, Hosoda M, Benno Y, Salminen S (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 43:351–354CrossRefPubMedGoogle Scholar
  32. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273CrossRefPubMedCentralPubMedGoogle Scholar
  33. Iwasaki A, Kelsall BL (1999) Mucosal immunity and inflammation. I. Mucosal dendritic cells: their specialized role in initiating T cell responses. Am J Phys 276:G1074–G1078Google Scholar
  34. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson ME (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16:164–177CrossRefPubMedGoogle Scholar
  35. Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, Suzuki T, Nochi T, Yokota Y, Rennert PD, Hiroi T, Tamagawa H, Iijima H, Kunisawa J, Yuki Y, Kiyono H (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 101:6110–6115CrossRefPubMedCentralPubMedGoogle Scholar
  36. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–15069CrossRefPubMedCentralPubMedGoogle Scholar
  37. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665CrossRefPubMedGoogle Scholar
  38. Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 20:30–39CrossRefPubMedGoogle Scholar
  39. Kanaya T, Hase K, Takahashi D, Fukuda S, Hoshino K, Sasaki I, Hemmi H, Knoop KA, Kumar N, Sato M, Katsuno T, Yokosuka O, Toyooka K, Nakai K, Sakamoto A, Kitahara Y, Jinnohara T, McSorley SJ, Kaisho T, Williams IR, Ohno H (2012) The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat Immunol 13:729–736CrossRefPubMedCentralPubMedGoogle Scholar
  40. Kato H, Fujihashi K, Kato R, Dohi T, Fujihashi K, Hagiwara Y, Kataoka K, Kobayashi R, McGhee JR (2003a) Lack of oral tolerance in aging is due to sequential loss of Peyer’s patch cell interactions. Int Immunol 15:145–158CrossRefPubMedGoogle Scholar
  41. Kato H, Fujihashi K, Kato R, Dohi T, Fujihashi K, Hagiwara Y, Kataoka K, Kobayashi R, McGhee JR (2003b) Lack of oral tolerance in aging is due to sequential loss of Peyer’s patch cell interactions. Int Immunol 15:145–158CrossRefPubMedGoogle Scholar
  42. Katz D, Hollander D, Said HM, Dadufalza V (1987) Aging-associated increase in intestinal permeability to polyethylene glycol 900. Dig Dis Sci 32:285–288CrossRefPubMedGoogle Scholar
  43. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefPubMedGoogle Scholar
  44. Kirkwood TB (2004) Intrinsic ageing of gut epithelial stem cells. Mech Ageing Dev 125:911–915CrossRefPubMedGoogle Scholar
  45. Kobayashi A, Donaldson DS, Erridge C, Kanaya T, Williams IR, Ohno H, Mahajan A, Mabbott NA (2013) The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol 6:1027–1037CrossRefPubMedCentralPubMedGoogle Scholar
  46. Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-1 in the regulation of lifespan. Cell 115:489–502CrossRefPubMedGoogle Scholar
  47. Lindner C, Wahl B, Fohse L, Suerbaum S, Macpherson AJ, Prinz I, Pabst O (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209:365–377CrossRefPubMedCentralPubMedGoogle Scholar
  48. Macpherson AJ, McCoy KD (2013) Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Semin Immunol 25:358–363CrossRefPubMedGoogle Scholar
  49. Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665CrossRefPubMedGoogle Scholar
  50. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127:344–354CrossRefPubMedGoogle Scholar
  51. Maffeis C, Martina A, Corradi M, Quarella S, Nori N, Torriani S, Plebani M, Contreas G, Felis GE (2016) Association between intestinal permeability and fecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab Res Rev.
  52. Man AL, Lodi F, Bertelli E, Regoli M, Pin C, Mulholland F, Satoskar AR, Taussig MJ, Nicoletti C (2008) Macrophage migration inhibitory factor plays a role in the regulation of microfold (M) cell-mediated transport in the gut. J Immunol 181:5673–5680CrossRefPubMedGoogle Scholar
  53. Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJ, Nicoletti C (2015) Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (Lond) 129:515–527CrossRefGoogle Scholar
  54. Man AL, Gicheva N, Regoli M, Rowley G, De Cunto G, Wellner N, Bassity E, Gulisano M, Bertelli E, Nicoletti C (2017) CX3CR1+ cell-mediated Salmonella exclusion protects the intestinal mucosa during the initial stage of infection. J Immunol 198:335–343CrossRefPubMedGoogle Scholar
  55. Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake ST, Man R, Elliott TR, Spranger H, Lee GH, Parian A, Brant SR, Lazarev M, Hart AL, Li X, Knight SC (2015) Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 65:256–270CrossRefPubMedCentralPubMedGoogle Scholar
  56. Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144CrossRefPubMedGoogle Scholar
  57. McDonald KG, Leach MR, Huang C, Wang C, Newberry RD (2011) Aging impacts isolated lymphoid follicle development and function. Immun Ageing 8:1. Scholar
  58. Moorefield EC, Andres SF, Blue RE, Van Landeghem L, Mah AT, Santoro MA, Ding S (2017) Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany NY) 9(8):1898–1915. PubMed PMID: 28854151Google Scholar
  59. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, von Andrian UH (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160CrossRefPubMedGoogle Scholar
  60. Moretto MM, Lawlor EM, Khan IA (2008) Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J Immunol 181:7977–7984CrossRefPubMedCentralPubMedGoogle Scholar
  61. Morley JE, Baumgartner RN (2004) Cytokine-related aging process. J Gerontol A Biol Sci Med Sci 59:M924–M929CrossRefPubMedGoogle Scholar
  62. Newton JL, Jordan N, Pearson J, Williams GV, Allen A, James OF (2000) The adherent gastric antral and duodenal mucus gel layer thins with advancing age in subjects infected with Helicobacter pylori. Gerontology 46:153–157CrossRefPubMedGoogle Scholar
  63. Nicoletti C (2000) Unsolved mysteries of intestinal M cells. Gut 47:735–739CrossRefPubMedCentralPubMedGoogle Scholar
  64. Nicoletti C, Cerny J (1991) The repertoire diversity and magnitude of antibody responses to bacterial antigens in aged mice: I. Age-associated changes in antibody responses differ according to the mouse strain. Cell Immunol 133:72–83CrossRefPubMedGoogle Scholar
  65. Nicoletti C, Borghesi C, Yang XH, Schulze DH, Cerny J (1991) Repertoire diversity of antibody response to bacterial antigens in aged mice. II. Phosphorylcholine-antibody in young and aged mice differ in both VH/VL gene repertoire and in specificity. J Immunol 147:2750–2755PubMedGoogle Scholar
  66. Nicoletti C, Yang X, Cerny J (1993) Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J Immunol 150:543–549PubMedGoogle Scholar
  67. Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–528CrossRefPubMedGoogle Scholar
  68. Ogino T, Miura S, Komoto S, Hara Y, Hokari R, Tsuzuki Y, Watanabe C, Koseki S, Nagata H, Hachimura S, Kaminogawa S, Ishii H (2004) Senescence-associated decline of lymphocyte migration in gut-associated lymphoid tissues of rat small intestine. Mech Ageing Dev 125:191–199. PubMed PMID: 15013663CrossRefPubMedGoogle Scholar
  69. Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172:61–64CrossRefPubMedGoogle Scholar
  70. Owen RL, Jones AL (1973) Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66:189–203Google Scholar
  71. Pabst R, Russell MW, Brandtzaeg P (2008) Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol 29:206–208CrossRefPubMedGoogle Scholar
  72. Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci U S A 107:454–459CrossRefPubMedGoogle Scholar
  73. Petrof EO, Gloor GB, Vanner SJ et al (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1:3–8CrossRefPubMedCentralPubMedGoogle Scholar
  74. Regoli M, Bertelli E, Gulisano M, Nicoletti C (2017) The multifaceted personality of intestinal CX(3)CR1(+) macrophages. Trends Immunol 38:879–887CrossRefPubMedGoogle Scholar
  75. Rera M, Azizi MJ, Walker DW (2013) Organ-specific mediation of lifespan extension: more than a gut feeling? Ageing Res Rev 12:436–444CrossRefPubMedGoogle Scholar
  76. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367CrossRefPubMedGoogle Scholar
  77. Rey J, Garin N, Spertini F, Corthesy B (2004) Targeting of secretory IgA to Peyer’s patch dendritic and T cells after transport by intestinal M cells. J Immunol 172:3026–3033CrossRefPubMedGoogle Scholar
  78. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, Sampietro GM et al (2005) Intestinal homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514CrossRefPubMedGoogle Scholar
  79. Rossen NG, MacDonald JK, de Vries EM et al (2015) Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World J Gastroenterol 21:5359–5371CrossRefPubMedCentralPubMedGoogle Scholar
  80. Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190CrossRefPubMedCentralPubMedGoogle Scholar
  81. Sait LC, Galic M, Price JD, Simpfendorfer KR, Diavatopoulos DA, Uren TK, Janssen PH, Wijburg OL, Strugnell RA (2007) Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int Immunol 19:257–265CrossRefPubMedGoogle Scholar
  82. Santiago AF, Alves AC, Oliveira RP, Fernandes RM, Paula-Silva J, Assis FA, Carvalho CR, Weiner HL, Faria AM (2011) Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology 216:1085–1093CrossRefPubMedCentralPubMedGoogle Scholar
  83. Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol 945:319–328CrossRefPubMedGoogle Scholar
  84. Schmucker DL, Daniels CK, Wang RK, Smith K (1988) Mucosal immune response to cholera toxin in ageing rats. I. Antibody and antibody-containing cell response. Immunology 64:691–695PubMedCentralPubMedGoogle Scholar
  85. Senda S, Cheng E, Kawanishi H (1988) Aging-associated changes in murine intestinal immunoglobulin A and M secretions. Scand J Immunol 27:157–164CrossRefPubMedGoogle Scholar
  86. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–453CrossRefPubMedCentralPubMedGoogle Scholar
  87. Simpson S, Ash C, Pennisi E, Travis J. (2005) The Gut: Inside out. Science; 307;1895 (it is an editorial so only 1-pager)Google Scholar
  88. Smith G (2015) The ageing society and its potential impact on health and social care provision working papers in the Health Sciences 1:13. ISSN 2051–6266 / 20150080Google Scholar
  89. Spadoni I, Iliev ID, Rossi G, Rescigno M (2012) Dendritic cells produce TSLP that limits the differentiation of Th17 cells, fosters Treg development, and protects against colitis. Mucosal Immunol 5(2):184–193CrossRefPubMedGoogle Scholar
  90. Stanton L, Kohn R (2012) Depression and the aging brain. Med Health R I 95:210–211PubMedGoogle Scholar
  91. Taylor LD, Daniels CK, Schmucker DL (1992) Ageing compromises gastrointestinal mucosal immune response in the rhesus monkey. Immunology 75:614–618PubMedCentralPubMedGoogle Scholar
  92. Thoreux K, Owen RL, Schmucker DL (2000) Intestinal lymphocyte number, migration and antibody secretion in young and old rats. Immunology 101:161–167CrossRefPubMedCentralPubMedGoogle Scholar
  93. Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68:1045–1056CrossRefPubMedCentralPubMedGoogle Scholar
  94. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809CrossRefPubMedGoogle Scholar
  95. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105:20858–20863CrossRefPubMedCentralPubMedGoogle Scholar
  96. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258CrossRefPubMedCentralPubMedGoogle Scholar
  97. Valenkevich IN, Zhukova NM (1976) The structure of the mucous membrane of the human duodenum with aging. Arkh Patol 38:58–61PubMedGoogle Scholar
  98. Van Itallie CM, Holmes J, Bridges A et al (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121:298–305CrossRefPubMedGoogle Scholar
  99. Volkert D (2013) Malnutrition in older adults - urgent need for action: a plea for improving the nutritional situation of older adults. Gerontology 59:328–333CrossRefPubMedGoogle Scholar
  100. Vrieze A, de Groot PF, Kootte RS, Knaapen M, van Nood E, Nieuwdorp M (2013) Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract Res Clin Gastroenterol 27:127–137CrossRefPubMedGoogle Scholar
  101. Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA (2006) Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med 203:21–26CrossRefPubMedCentralPubMedGoogle Scholar
  102. Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2:203–212CrossRefPubMedGoogle Scholar
  103. Zhang S (2013) Faeces-filled pill stops gut infection. Nature.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Experimental and Clinical Medicine, Section of AnatomyUniversity of FlorenceFlorenceItaly

Personalised recommendations