Skip to main content

Oxidation and Inflammation in the Immune and Nervous Systems, a Link Between Aging and Anxiety

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Anxiety and aging are two related situations. Thus, adult individuals with anxiety show premature aging, and anxiety symptoms or disorders are relatively common in older subjects. According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the age-related impairment of the functions of organisms. This principally affects the homeostatic systems; the nervous, endocrine, and immune systems; as well as their bidirectional communication. The age-related alteration in homeostasis and the resulting increase of morbidity and mortality could thus be explained. This theory also suggests that the immune system, due to its property of producing oxidants and inflammatory compounds to carry out its work, if not well regulated, could be involved in the rate of aging of each individual in the context of neuroimmune communication. It has been observed that an oxidative-inflammatory situation occurs in subjects with anxiety, which contributes to immunosenescence and a shorter life span, As an example of this, there are several models of premature aging in mice, in which those animals with a poor response to stress and consequently high levels of anxiety, show an oxidative and inflammatory stress in their immune cells and brain as well as in other tissues. These animals show premature immunosenescence and a shorter life expectancy than the corresponding counterparts of the same age. In conclusion, oxidation and inflammation, two related processes, could be the link between immunosenescence, aging, and anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida FF, Belz GT (2016) Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol 9(5):1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10): 1549–1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Arranz L, Caamaño JH, Lord JM, De la Fuente M (2010) Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor kappa β. J Gerontol A Biol Sci Med Sci 65A:941–950

    Article  CAS  Google Scholar 

  • Arranz L, Naudi A, De la Fuente M, Pamplona R (2013) Exceptionally old mice are highly resistant to lipoxidation-derived molecular damage. Age 35(3):621–635

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19(12):1420–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, De la Fuente M (2016) The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev 158:27–37

    Article  CAS  PubMed  Google Scholar 

  • Bauer ME, Muller GC, Correa BL, Vianna P, Turner JE, Bosch JA (2013) Psychoneuroendocrine interventions aimed at attenuating immunosenescence: a review. Biogerontology 14:9–20

    Article  CAS  PubMed  Google Scholar 

  • Behnia F, Shelter S, Menon R (2016) Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol 75(5):505–518

    Article  CAS  PubMed  Google Scholar 

  • Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12): 1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20

    Article  PubMed  Google Scholar 

  • Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19(l):26–30

    Article  CAS  PubMed  Google Scholar 

  • Blay SL, Marinho V (2012) Anxiety disorders in old age. Curr Opin Psychiatry 25(6):462–467

    Article  PubMed  Google Scholar 

  • Block ML, Hong IS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35(Pt 5):1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Bonini MG, Malik AB (2014) Regulating the regulator of ROS production. Cell Res 24(8):908–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broz P (2016) Inflammasomes: intracellular detection of extracelular bacteria. Cell Res 26:859–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunk UT, Teman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5):611–619

    Article  CAS  PubMed  Google Scholar 

  • Cannizzo ES, Clement CC, Sahua CR, Folloa C, Santambrogioa L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteome 74:2313–2323

    Article  CAS  Google Scholar 

  • Caro P, Gómez J, Arduini A, González-Sánchez M, González-García M, Borrás C, Viña J, Puertas MJ, Sastre J, Barja G (2010) Mitochondrial DNA sequences are present inside nuclear DNA in rat tissues and increase with age. Mitochondrion 10(5):479–486

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Ivessa AS (2012) Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast. Eur J Cell Biol 91(10):782–788

    Article  CAS  PubMed  Google Scholar 

  • Chiurchiù V, Orlacchio A, Maccarrone M (2016) Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev 2016:7909380

    Article  CAS  PubMed  Google Scholar 

  • Cruces J, Venero C, Pereda Pérez l, De la Fuente M (2014) The effect of psychological stress and social isolation on neuroimmunoendocrine communication. Curr Pharm Des 20(29):4608–4628

    Article  CAS  PubMed  Google Scholar 

  • Das R, Ponnappan S, Ponnappan U (2007) Redox regulation of the proteasome in T lymphocytes during aging. Free Radic Biol Med 42(4):541–551

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente M (2010) Murine models of premature ageing for the study of diet-induced immune changes: improvement of leucocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc 69(4):651–659

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente M (2014) The immune system, a marker and modulator of the rate of aging. In: Massoud A, Rezaei N (eds) Immunology of aging. Springer, Berlin/Heidelberg

    Google Scholar 

  • De la Fuente M, Gimenez-Llort L (2010) Models of aging of neuroimmunomodulation: strategies for its improvement. Neuroimmunomodulation 17(3):213–216

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026

    Article  PubMed  Google Scholar 

  • De la Fuente M, Cruces J, Hernandez O, Ortega E (2011) Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des 17(36):3966–3993

    Article  PubMed  Google Scholar 

  • Deleidi M, Jäggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Emhan A, Selek S, Bayazit H, Fatih Karababa Ỉ, Kati M, Aksoy N (2015) Evaluation of oxidative and antioxidative parameters in generalized anxiety disorder. Psychiatry Res 230(3):806–810

    Article  CAS  PubMed  Google Scholar 

  • Estes ME, McAllister AK (2014) Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation! Brain Pathol 24(6):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi C, Bonafé M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  • Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Garaude J, Acín-Pérez R, Martinez-Cano S, Enamorado M, Ugolini M, Nistal-Villán E, Hervás-Stubbs S, Pelegrín P, Sander LE, Enríquez JA, Sancho D (2016) Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol 17(9): 1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido A,Cruces J, Ceprian N, Hernandez-Sanchez C, De la Fuente M (2018) Premature agin in behavior and immune functions in tyrosine hydroxylases hploinsufficient female mice. A longitudinal study. Brain Behav Immun Pii:S0889-1591(18)30003-5

    Google Scholar 

  • Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 265(1):63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon MA, Quintin J (2016) Innate immune memory in mammals. Semin Immunol 28(4): 351–358

    Article  CAS  PubMed  Google Scholar 

  • Han XQ, Gong ZJ, Xu SQ, Li X, Wang LK, Wu SM, Wu JH, Yang HF (2014) Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response. J Huazhoug Univ Sci Technolog Med Sei 34(1):10–17

    Article  CAS  Google Scholar 

  • Huang J, Xie Y, Sun X, Zelt HJ 3rd, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24(Pt A):3–16

    Article  CAS  PubMed  Google Scholar 

  • Hung LF, Huang KY, Yang DH, Chang DM, Lai JH, Ho LJ (2010) Advanced glycation end products induce T cell apoptosis: involvement of oxidative stress, caspase and the mitochondrial pathway. Mech Ageing Dev 131(1l-12):682–691

    Article  CAS  PubMed  Google Scholar 

  • Kapetanovic R, Bokil NJ, Sweet MJ (2015) Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: a ticking time bomb in ageing. Ageing Res Rev 24(Pt A):40–53

    Article  CAS  PubMed  Google Scholar 

  • Knuppertz L, Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: role of nonselective autophagy and mitophagy. Mech Ageing Dev 153:30–40

    Article  CAS  Google Scholar 

  • Kröller-Schön SI, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Münzel T, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20(2):247–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23(3):187–207

    Article  CAS  PubMed  Google Scholar 

  • Lourbopoulos A, Ertürk A, Hellal F (2015) Microglia in action: how aging and injury can change the brain’s guardians. Front Cell Neurosci 9:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luévano-Contreras C, Garav-Sevilla ME, Wrobel K, Malacara JM, Wrobel K (2013) Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J Clin Biochem Nutr 52:22–26

    Article  CAS  PubMed  Google Scholar 

  • Ma Q (2014) Advances in mechanisms of anti-oxidation. Discov Med 17(93):121–130

    PubMed  PubMed Central  Google Scholar 

  • Martinez de Toda E, De la Fuente M (2015) The role of Hsp70 in oxi-inflamm-aging and it use as a potential biomarker of lifespan. Biogerontology 16:709–721

    Article  CAS  PubMed  Google Scholar 

  • Martínez de Toda I, Mate I, Vida C, Cruces J, De la Fuente M (2016a) Immune function parameters as markers of biological age and predictors of longevity. Aging 8(11):3110–3119

    Article  PubMed  Google Scholar 

  • Martínez de Toda I, Vida C, Ortega E, De La Fuente M (2016b) Hsp70 basal levels, a tissue marker of the rate of aging and longevity in mice. Exp Gerontol 84:21–28

    Article  CAS  Google Scholar 

  • Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG (2016) Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12(2):245–260

    Article  CAS  PubMed  Google Scholar 

  • Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, Ding J, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Sai T, Lu R, Modrusan Z, Hackney J, Ouyang W (2014) NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509(7499):235–239

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan A, Slavich GM, Epel ES, Neylan TC (2013) Exaggerated neurobiological sensitivity to threat as a mechanism linking anxiety with increased risk for diseases of aging. Neurosci Biobehav Rev 37:96–108

    Article  PubMed  Google Scholar 

  • Ojo JO, Rezaie P, Gabbott PL, Stewart MG (2015) Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 7:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    Article  CAS  PubMed  Google Scholar 

  • Pema G, Iannone G, Alciati A, Caldirola D (2016) Are anxiety disorders associated with accelerated aging? A focus on neuroprogression. Neural Plast 2016:8457612

    Google Scholar 

  • Ramasamy R, Shekhtman A, Schmidt AM (2016) The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20(4):431–446

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20(18):3036–3039

    Article  CAS  PubMed  Google Scholar 

  • Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289:429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeg S, Grune T (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal 23(3):239–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remes O, Brayne C, van der Linde R. Lafortune L. (2016) A systematic review of reviews on the prevalence of anxiety disorders in adult populationss. Brain Behav 6(7):e00497

    Article  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signalling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4(3):166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz A (2016) Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? Biochim Biophys Acta 1857(8):1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Schorey JS, Harding CV (2016) Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 126(4):1181–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Shang N, Li P (2011) In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr Microbiol 62(4):1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava G, León-Juárez M, García-Cordero J, Mcza-Sánchez DE, Cedillo-Barrón L (2016) Inflammasomes and its importance in viral infections. Immunol Res 64:1101

    Article  CAS  PubMed  Google Scholar 

  • Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thundyil J, Lim KL (2015) DAMPs and neurodegeneration. Ageing Res Rev 24(Pt A):17–28

    Article  CAS  PubMed  Google Scholar 

  • Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, Blanco P, Duffau P (2016) Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev 15(2):174–183

    Article  CAS  PubMed  Google Scholar 

  • Vassileva V, Piquette-Miller M (2014) Inflammation: the dynamic force of health and disease. Clin Pharmacol Ther 96(4):401–405

    Article  CAS  PubMed  Google Scholar 

  • Verburg-van Kemenade BM, Cohen N, Chadzinska M (2016) Neuroendocrine-immune interaction: evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev Comp Immunol 66:2. https://doi.org/10.1016/j.dci.2016.05.015

    Article  PubMed  CAS  Google Scholar 

  • Vida C, De la Fuente M (2013) Stress-related behavioural responses, immunity and ageing in animal models. In: Bosch JA, Phillips C, Lord JM (eds) Immunosenescence: psychosocial and behavioral determinants. Springer, New York, pp 125–144

    Chapter  Google Scholar 

  • Vida C, Gonzalez EM, De la Fuente M (2014) Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety. Curr Pharm Des 20(29):4656–4678

    Article  CAS  PubMed  Google Scholar 

  • Vida C, Martinez de Toda I, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M (2017) Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol 12:423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villasana LE, Weber S, Akinyeke T, Raber J (2016) Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 138(6):896–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M (2007) A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation 14:157–162

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Dexter DT, Crichton RR (2015) Ageing, neuroinflammation and neurodegeneration. Front Biosci 7:189–204

    Article  Google Scholar 

  • Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var, plantarum C29 ameliorates memory impairment and inflammaging in a d-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Yu J, Zhu A, Nakanishi H (2016) Nutrients, microglia aging, and brain aging. Oxidative Med Cell Longev 2016:7498528

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Vida for her help in this manuscript and also expresses her gratitude to Dr. Arranz, Dr. Gimenez-Llort, Dr. Vida, Mr. Garrido, Ms. Ceprian, Ms. Martinez de Toda, and Ms. Cruces for carried out experiments which have allowed us to arrive at some of the ideas expressed in this chapter. This work was supported by several grants (RETICEF: RD12/0043/0018 and PI15/01787) from the ISCIII-FEDER of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica De la Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De la Fuente, M. (2018). Oxidation and Inflammation in the Immune and Nervous Systems, a Link Between Aging and Anxiety. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics