Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Artifact-Centric Process Mining

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_93-1



Artifact-centric process mining is an extension of classical process mining (van der Aalst 2016) that allows to analyze event data with more than one case identifier in its entirety. It allows to analyze the dynamic behavior of (business) processes that create, read, update, and delete multiple data objects that are related to each other in relationships with one-to-one, one-to-many, and many-to-many cardinalities. Such event data is typically stored in relational databases of, for example, Enterprise Resource Planning (ERP) systems (Lu et al. 2015). Artifact-centric process mining comprises artifact-centric process discovery, conformance checking, and enhancement. The outcomes of artifact-centric process mining can be used for documenting the actual data flow in an organization and for analyzing deviations in the data flow for performance and conformance analysis.

The input to artifact-centric process...


Artifact-centric Process Behavioral Dependence Case Management Model And Notation (CMMN) Classical Process Mining Data-centric Dynamic Systems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Buijs JCAM, van Dongen BF, van der Aalst WMP (2012) A genetic algorithm for discovering process trees. In: IEEE congress on evolutionary computationGoogle Scholar
  2. Calvanese D, Montali M, Estañol M, Teniente E (2014) Verifiable UML artifact-centric business process models. In: CIKMGoogle Scholar
  3. Calvo HAS (2017) Artifact-centric log extraction for cloud systems. Master’s thesis, Eindhoven University of TechnologyGoogle Scholar
  4. de Murillas EGL, van der Aalst WMP, Reijers HA (2015) Process mining on databases: unearthing historical data from redo logs. In: BPMGoogle Scholar
  5. de Murillas EGL, Reijers HA, van der Aalst WMP (2016) Connecting databases with process mining: a meta model and toolset. In: BMMDS/EMMSADGoogle Scholar
  6. Estañol M, Queralt A, Sancho MR, Teniente E (2012) Artifact-centric business process models in UML. In: Business process management workshopsGoogle Scholar
  7. Fahland D, de Leoni M, van Dongen BF, van der Aalst WMP (2011a) Behavioral conformance of artifact-centric process models. In: BISCrossRefGoogle Scholar
  8. Fahland D, de Leoni M, van Dongen BF, van der Aalst WMP (2011b) Conformance checking of interacting processes with overlapping instances. In: BPMGoogle Scholar
  9. Fahland D, de Leoni M, van Dongen BF, van der Aalst WMP (2011c) Many-to-many: some observations on interactions in artifact choreographies. In: ZEUSGoogle Scholar
  10. Hariri BB, Calvanese D, Giacomo GD, Deutsch A, Montali M (2013) Verification of relational data-centric dynamic systems with external services. In: PODSGoogle Scholar
  11. Hull R, Damaggio E, Masellis RD, Fournier F, Gupta M, Heath FT, Hobson S, Linehan MH, Maradugu S, Nigam A, Sukaviriya N, Vaculín R (2011) Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In: DEBSGoogle Scholar
  12. Jans M (2017) From relational database to event log: decisions with quality impact. In: First international workshop on quality data for process analyticsGoogle Scholar
  13. Leemans SJJ, Fahland D, van der Aalst WMP (2013) Discovering block-structured process models from event logs – a constructive approach. In: Petri netsCrossRefGoogle Scholar
  14. Liu CS, van Dongen BF, Assy N, van der Aalst WMP (2016) Component behavior discovery from software execution data. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8Google Scholar
  15. Lohmann N (2011) Compliance by design for artifact-centric business processes. Inf Syst 38(4):606–618CrossRefGoogle Scholar
  16. Lohmann N, Nyolt M (2011) Artifact-centric modeling using BPMN. In: ICSOC workshopsGoogle Scholar
  17. Lu X, Nagelkerke M, van de Wiel D, Fahland D (2015) Discovering interacting artifacts from ERP systems. IEEE Trans Serv Comput 8:861–873CrossRefGoogle Scholar
  18. Meyer A, Weske M (2013) Activity-centric and artifact-centric process model roundtrip. In: Business process management workshopsGoogle Scholar
  19. Montali M, Calvanese D (2016) Soundness of data-aware, case-centric processes. Int J Softw Tools Technol Trans 18:535–558CrossRefGoogle Scholar
  20. Nigam A, Caswell NS (2003) Business artifacts: an approach to operational specification. IBM Syst J 42:428–445CrossRefGoogle Scholar
  21. Nooijen EHJ, van Dongen BF, Fahland D (2012) Automatic discovery of data-centric and artifact-centric processes. In: Business process management workshops. Lecture notes in business information processing, vol 132. Springer, pp 316–327. https://doi.org/10.1007/978-3-642-36285-9_36CrossRefGoogle Scholar
  22. OMG (2016) Case management model and notation, version 1.1. http://www.omg.org/spec/CMMN/1.1
  23. Popova V, Dumas M (2013) Discovering unbounded synchronization conditions in artifact-centric process models. In: Business process management workshopsGoogle Scholar
  24. Popova V, Fahland D, Dumas M (2015) Artifact lifecycle discovery. Int J Coop Inf Syst 24:44CrossRefGoogle Scholar
  25. Reijers HA, Vanderfeesten ITP, Plomp MGA, Gorp PV, Fahland D, van der Crommert WLM, Garcia HDD (2015) Evaluating data-centric process approaches: does the human factor factor in? Softw Syst Model 16:649–662CrossRefGoogle Scholar
  26. vanden Broucke SKLM, Weerdt JD (2017) Fodina: a robust and flexible heuristic process discovery technique. Decis Support Syst 100:109–118CrossRefGoogle Scholar
  27. van der Aalst WMP (2016) Process mining – data science in action, 2nd edn. Springer. https://doi.org/10.1007/978-3-662-49851-4
  28. van der Aalst WMP, Barthelmess P, Ellis CA, Wainer J (2001) Proclets: a framework for lightweight interacting workflow processes. Int J Coop Inf Syst 10:443–481Google Scholar
  29. van Eck ML, Sidorova N, van der Aalst WMP (2016) Composite state machine miner: discovering and exploring multi-perspective processes. In: BPMGoogle Scholar
  30. van Eck ML, Sidorova N, van der Aalst WMP (2017) Guided interaction exploration in artifact-centric process models. In: 2017 IEEE 19th conference on business informatics (CBI), vol 1, pp 109–118Google Scholar
  31. Verbeek HMW, Buijs JCAM, van Dongen BF, van der Aalst WMP (2010) Xes, xesame, and prom 6. In: CAiSE forumGoogle Scholar
  32. Weerdt JD, Backer MD, Vanthienen J, Baesens B (2012) A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf Syst 37(7):654–676. https://doi.org/10.1016/j.is.2012.02.004CrossRefGoogle Scholar
  33. Weijters AJMM, Ribeiro JTS (2011) Flexible heuristics miner (FHM). In: 2011 IEEE symposium on computational intelligence and data mining (CIDM), pp 310–317Google Scholar

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Section editors and affiliations

  • Marlon Dumas
    • 1
  • Matthias Weidlich
    • 2
  1. 1.Institute of Computer ScienceUniversity of TartuTartuEstonia
  2. 2.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany