Skip to main content

Link Analytics in Graphs

  • 269 Accesses

Synonyms

Link analysis; Link mining

Definitions

Link analytics is a set of specialized data analysis and graph mining techniques that discover, examine, and evaluate the relationships or interlinked structures of graphs.

Overview

Graph-structured data are ubiquitous (Aggarwal and Wang 2010; Cook and Holder 2006), which consist of vertices (or nodes) representing physical, technological, conceptual, and societal entities or objects and edges (or links) illustrating connections, relationships, or dependencies between vertices in application-specific ways. Noteworthy examples of graphs and networked data include the World Wide Web, where webpages are vertices and hyperlinks are edges (Kleinberg et al. 1999), and social networks, where individuals are vertices and friendship relations are edges (Pitas 2015). In response to the growing popularity and wide applicability of graphs, a proliferation of link analysis techniques has emerged, focusing primarily on the modeling, quantification,...

This is a preview of subscription content, access via your institution.

References

  • Aggarwal CC, Wang H (2010) Managing and mining graph data, 1st edn. Springer Publishing Company, Inc., Boston

    Google Scholar 

  • Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9:1981–2014

    Google Scholar 

  • Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: Proceedings of the 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp 475–486

    Google Scholar 

  • Antonellis I, Molina HG, Chang CC (2008) Simrank++: query rewriting through link analysis of the click graph. Proc VLDB Endow 1(1):408–421

    CrossRef  Google Scholar 

  • Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on web search and data mining (WSDM’11), pp 635–644

    Google Scholar 

  • Bahmani B, Chowdhury A, Goel A (2010) Fast incremental and personalized pagerank. Proc VLDB Endow 4(3):173–184

    CrossRef  Google Scholar 

  • Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’14), pp 1266–1275

    Google Scholar 

  • Berkhin P (2005) Survey: a survey on pagerank computing. Internet Math 2(1):73–120

    MathSciNet  CrossRef  Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the seventh international conference on World Wide Web (WWW’98), pp 107–117

    CrossRef  Google Scholar 

  • Chebolu P, Melsted P (2008) Pagerank and the random surfer model. In: Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms (SODA’08)

    Google Scholar 

  • Cook DJ, Holder LB (2006) Mining graph data. Wiley, New York

    Google Scholar 

  • Ding C, He X, Husbands P, Zha H, Simon HD (2002) Pagerank, hits and a unified framework for link analysis. In: Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’02), pp 353–354

    Google Scholar 

  • Duan L, Aggarwal C, Ma S, Hu R, Huai J (2016) Scaling up link prediction with ensembles. In: Proceedings of the ninth ACM international conference on web search and data mining (WSDM’16), pp 367–376

    Google Scholar 

  • Fogaras D, Rácz B, Csalogány K, Sarlós T (2005) Towards scaling fully personalized pagerank: algorithms, lower bounds, and experiments. Internet Math 2(3):333–358

    MathSciNet  CrossRef  Google Scholar 

  • Fujiwara Y, Nakatsuji M, Shiokawa H, Mishima T, Onizuka M (2013) Efficient ad-hoc search for personalized pagerank. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data (SIGMOD’13), pp 445–456

    Google Scholar 

  • Gupta P, Goel A, Lin J, Sharma A, Wang D, Zadeh R (2013) WTF: The who to follow service at twitter. In: Proceedings of the 22nd international conference on World Wide Web (WWW’13), pp 505–514

    Google Scholar 

  • Hasan M, Zaki M (2011) A survey of link prediction in social networks. In: Aggarwal CC (ed) Social network data analytics. Springer, New York, pp 243–275

    CrossRef  Google Scholar 

  • Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (KDD’02), pp 538–543

    Google Scholar 

  • Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on World Wide Web (WWW’03), pp 271–279

    Google Scholar 

  • Jiang M, Fu AWC, Wong RCW (2017) Reads: a random walk approach for efficient and accurate dynamic simrank. Proc VLDB Endow 10(9):937–948

    CrossRef  Google Scholar 

  • Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632

    MathSciNet  CrossRef  Google Scholar 

  • Kleinberg JM, Kumar R, Raghavan P, Rajagopalan S, Tomkins AS (1999) The web as a graph: measurements, models, and methods. In: Proceedings of the 5th annual international conference on computing and combinatorics (COCOON’99), pp 1–17

    Google Scholar 

  • Liben-Nowell D, Kleinberg J (2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management (CIKM’03), pp 556–559

    Google Scholar 

  • Liu Q, Xiang B, Yuan NJ, Chen E, Xiong H, Zheng Y, Yang Y (2017) An influence propagation view of pagerank. ACM Trans Knowl Discov Data 11(3):30: 1–30:30

    Google Scholar 

  • Lizorkin D, Velikhov P, Grinev M, Turdakov D (2008) Accuracy estimate and optimization techniques for simrank computation. Proc VLDB Endow 1(1): 422–433

    CrossRef  Google Scholar 

  • Lofgren PA, Banerjee S, Goel A, Seshadhri C (2014) FAST-PPR: scaling personalized pagerank estimation for large graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’14), pp 1436–1445

    Google Scholar 

  • Maehara T, Akiba T, Iwata Y, Kawarabayashi Ki (2014) Computing personalized pagerank quickly by exploiting graph structures. Proc VLDB Endow 7(12): 1023–1034

    CrossRef  Google Scholar 

  • Martínez V, Berzal F, Cubero JC (2016) A survey of link prediction in complex networks. ACM Comput Surv 49(4):69:1–69:33

    CrossRef  Google Scholar 

  • Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of the 18th international conference on data engineering (ICDE’02), pp 117–128

    Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web. In: Proceedings of the 7th international World Wide Web conference (WWW’98), pp 161–172

    Google Scholar 

  • Pitas I (2015) Graph-based social media analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Tian B, Xiao X (2016) Sling: A near-optimal index structure for simrank. In: Proceedings of the 2016 international conference on management of data (SIGMOD’16), pp 1859–1874

    Google Scholar 

  • Wang S, Tang Y, Xiao X, Yang Y, Li Z (2016) Hubppr: effective indexing for approximate personalized pagerank. Proc VLDB Endow 10(3):205–216

    CrossRef  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixiang Zhao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Zhao, P. (2018). Link Analytics in Graphs. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_320-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_320-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering