Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Automated Reasoning

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_314-1



Reasoning is the process of deriving conclusions in a logical way. Automatic reasoning is concerned with the construction of computing systems that automate this process over some knowledge bases.

Automated Reasoning is often considered as a subfield of artificial intelligence. It is also studied in the fields of theoretical computer science and even philosophy.


The development of formal logic (Frege 1884) played a big role in the field of automated reasoning, which itself led to the development of artificial intelligence.

Historically, automated reasoning is largely related to theorem proving, general problem solvers, and expert systems (cf. the section of “A Bit of History”). In the context of big data processing, automated reasoning is more relevant to modern knowledge representation languages, such as the W3C standard Web Ontology Language (OWL) (https://www.w3.org/TR/owl2-overview/...

This is a preview of subscription content, log in to check access.


  1. Artale A, Franconi E (1994) A computational account for a description logic of time and action. In: KR1994, pp 3–14CrossRefGoogle Scholar
  2. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, New YorkzbMATHGoogle Scholar
  3. Baader F, Brandt S, Lutz C (2005) Pushing the EL envelope. In: IJCAI2015Google Scholar
  4. Baader F, Lutz C, Suntisrivaraporn B (2006) CEL—a polynomial-time reasoner for life science ontologies. In: IJCAR’06, pp 287–291Google Scholar
  5. Baader F, Brandt S, Lutz C (2008) Pushing the EL envelope further. In: OWLED2008Google Scholar
  6. Bergmann F, Quantz J (1995) Parallelizing description logics. In: KI1995, pp 137–148CrossRefGoogle Scholar
  7. Borgida A, Serafini L (2003) Distributed description logics. J Data Semant 1:153–184zbMATHGoogle Scholar
  8. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the dl-lite family. J Autom Reason 39:385–429MathSciNetCrossRefGoogle Scholar
  9. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A, Rodriguez-Muro M, Rosati R, Ruzzi M, Savo DF (2011) The MASTRO system for ontology-based data access. J Web Semant 2:43–53Google Scholar
  10. Calvanese D, Cogrel B, Komla-Ebri S, Kontchakov R, Lanti D, Rezk M, Rodriguez-Muro M, Xiao G (2016) Ontop: answering SPARQL queries over relational databases. Semant Web J 8:471-487CrossRefGoogle Scholar
  11. Ceri S, Gottlob G, Tancar L (1989) What you always wanted to know about Datalog (and never dared to ask). IEEE Trans Knowl Data Eng 1:146–166CrossRefGoogle Scholar
  12. Chen J, Lecue F, Pan JZ, Chen H (2017) Learning from ontology streams with semantic concept drift. In: IJCAI-2017, pp 957–963Google Scholar
  13. Colucci S, Noia TD, Sciascio ED, Donini F (2003) Concept abduction and contraction in description logics. In: DL2003Google Scholar
  14. Davis M (1957) A computer program for Presburgers’ algorithm. In: Summaries of talks presented at the summer institute for symbolic logic, Cornell University, pp 215–233Google Scholar
  15. Frege G (1884) Die Grundlagen der Arithmetik. Breslau, Wilhelm KobnerGoogle Scholar
  16. Glimm B, Horrocks I, Motik B, Stoilos G (2010) Optimising ontology classification. In: ISWC2010, pp 225–240Google Scholar
  17. Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) HermiT: an OWL 2 reasoner. J Autom Reason 53: 245–269CrossRefGoogle Scholar
  18. Grosof BN, Horrocks I, Volz R, Decker S (2003) Description logic programs: combining logic programs with description logic. In: WWW2003, pp 48–57Google Scholar
  19. Haarslev V, Möller R (2001) RACER system description. In: IJCAR2001, pp 701–705CrossRefGoogle Scholar
  20. Horrocks I (1998) Using an expressive description logic: FaCT or fiction? In: KR1998Google Scholar
  21. Horrocks I, Patel-Schneider P (2003) From SHIQ and RDF to OWL: the making of a web ontology language. J Web Semant 1:7–26CrossRefGoogle Scholar
  22. Horrocks I, Sattler U (2005) A tableaux decision procedure for shoiq. In: IJCAI2005, pp 448–453Google Scholar
  23. Horrocks I, Kutz O, Sattler U (2006) The even more irresistible sroiq. In: KR2006, pp 57–67Google Scholar
  24. Kaminski M, Grau BC, Kostylev EV, Motik B, Horrocks I (2017) Foundations of declarative data analysis using limit datalog programs. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17, pp 1123–1130.  https://doi.org/10.24963/ijcai.2017/156 CrossRefGoogle Scholar
  25. Kazakov Y, Klinov P (2013) Incremental reasoning in OWL EL without bookkeeping. In: ISWC2013, pp 232–247Google Scholar
  26. Kazakov Y, Krötzsch M, Simancik F (2011) Concurrent classification of EL ontologies. In: ISWC2011, pp 305–320Google Scholar
  27. Kazakov Y, Krötzsch M, Simancik F (2012) ELK reasoner: architecture and evaluation. In: ORE2012Google Scholar
  28. Koller D, Levy A, Pfeffer A (1997) P-CLASSIC: a tractable probablistic description logic. In: AAAI1997Google Scholar
  29. Konev B, Lutz C, Ozaki A, Wolter F (2014) Exact learning of lightweight description logic ontologies. In: KR2014, pp 298–307Google Scholar
  30. Krötzsch M, Rudolph S, Hitzler P (2008) Description logic rules. In: ECAI2008, pp 80–84Google Scholar
  31. Serafini L, Tamilin A (2005) Drago: distributed reasoning architecture for the semantic web. In: ESWC2005, pp 361–376Google Scholar
  32. Lecue F, Pan JZ (2015) Consistent knowledge discovery from evolving ontologies. In: AAAI-15Google Scholar
  33. Levesque HJ, Brachman RJ (1987) Expressiveness and tractability in knowledge representation and reasoning. Comput Intell 3:78–93CrossRefGoogle Scholar
  34. Lifschitz V (2002) Answer set programming and plan generation. Artif Intell 138:39–54MathSciNetCrossRefGoogle Scholar
  35. Lisi FA, Malerba D (2003) Ideal refinement of descriptions in AL-Log. In: ICILP2003Google Scholar
  36. Lutz C, Seylan I, Wolter F (2013) Ontology-based data access with closed predicates is inherently intractable (Sometimes). In: IJCAI2013, pp 1024–1030Google Scholar
  37. MacGregor RM (1991) Inside the LOOM description classifier. ACM SIGART Bull – special issue on implemented knowledge representation and reasoning systems 2:88–92Google Scholar
  38. Motik B, Horrocks I (2008) Owl datatypes: design and implementation. In: ISWC2008, pp 307–322Google Scholar
  39. Motik B, Sattler U, Studer R (2005) Query answering for OWL-DL with rules. J Web Semant 3:41–60CrossRefGoogle Scholar
  40. Motik B, Shearer R, Horrocks I (2009) Hypertableau reasoning for description logics. J Artif Intell Res 36: 165–228MathSciNetCrossRefGoogle Scholar
  41. Motik B, Nenov Y, Piro R, Horrocks I, Olteanu D (2014) Parallel materialisation of datalog programs in centralised, main-memory RDF systems. In: AAAI2014Google Scholar
  42. Motik B, Nenov Y, Piro R, Horrocks I (2015a) Handling of owl: sameAs via rewriting. In: AAAI2015Google Scholar
  43. Motik B, Nenov Y, Robert Piro IH (2015b) Incremental update of datalog materialisation: the backward/forward algorithm. In: AAAI2015Google Scholar
  44. Newell A, Shaw C, Simon H (1957) Empirical explorations of the logic theory machine. In: Proceedings of the 1957 western joint computer conferenceGoogle Scholar
  45. Pan JZ, Horrocks I (2003) RDFS(FA) and RDF MT: two semantics for RDFS. In: Fensel D, Sycara K, Mylopoulos J (eds) ISWC2003Google Scholar
  46. Pan JZ, Horrocks I (2006) OWL-Eu: adding customised datatypes into OWL. J Web Semant 4:29–39CrossRefGoogle Scholar
  47. Pan JZ, Thomas E (2007) Approximating OWL-DL ontologies. In: The proceedings of the 22nd national conference on artificial intelligence (AAAI-07), pp 1434–1439Google Scholar
  48. Pan JZ, Ren Y, Zhao Y (2016a) Tractable approximate deduction for OWL. Artif Intell 235:95–155MathSciNetCrossRefGoogle Scholar
  49. Pan JZ, Vetere G, Gomez-Perez J, Wu H (2016b) Exploiting linked data and knowledge graphs for large organisations. Springer, SwitzerlandGoogle Scholar
  50. Pan JZ, Calvanese D, Eiter T, Horrocks I, Kifer M, Lin F, Zhao Y (2017) Reasoning web: logical foundation of knowledge graph construction and querying answering. Springer, ChamCrossRefGoogle Scholar
  51. Qi G, Ji Q, Pan JZ, Du J (2011) Extending description logics with uncertainty reasoning in possibilistic logic. Int J Intell Syst 26:353–381CrossRefGoogle Scholar
  52. Quantz JJ, Suska S (1994) Weighted defaults in description logics: formal properties and proof theory. In: Annual conference on artificial intelligence, pp 178–189Google Scholar
  53. Ren Y, Pan JZ (2011) Optimising ontology stream reasoning with truth maintenance system. In: CIKM 2011Google Scholar
  54. Ren Y, Pan JZ, Zhao Y (2010) Soundness preserving approximation for TBox reasoning. In: AAAI2010Google Scholar
  55. Ren Y, Parvizi A, Mellish C, Pan JZ, van Deemter K, Stevens R (2014) Towards competency question-driven ontology authoring. In: Proceedings of the 11th conference on extended semantic web conference (ESWC 2014)Google Scholar
  56. Ren Y, Pan JZ, Guclu I, Kollingbaum M (2016) A combined approach to incremental reasoning for EL ontologies. In: RR2016Google Scholar
  57. Rodriguez-Muro M, Rezk M (2015) Efficient SPARQL-to-SQL with R2RML mappings. J Web Semant 33:141–169CrossRefGoogle Scholar
  58. Rodriguez-Muro M, Kontchakov R, Zakharyaschev M (2013) Query rewriting and optimisation with database dependencies in ontop. In: DL2013Google Scholar
  59. Rosati R, Almatelli A (2010) Improving query answering over DL-Lite ontologies. In: KR2010, pp 290–300Google Scholar
  60. Shortliffe EH (1974) MYCIN: a rule-based computer program from advising physicians regarding antimicrobial therapy selection. PhD thesis, Stanford UniversityGoogle Scholar
  61. Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: a practical owl-dl reasoner. J Web Semant 5:51–53CrossRefGoogle Scholar
  62. Steigmiller A, Glimm B (2015) Pay-As-You-Go description logic reasoning by coupling tableau and saturation procedure. J Artif Intell Res 54:535–592MathSciNetCrossRefGoogle Scholar
  63. Steigmiller A, Glimm B, Liebig T (2014a) Reasoning with nominal schemas through absorption. J Autom Reason 53:351–405MathSciNetCrossRefGoogle Scholar
  64. Steigmiller A, Liebig T, Glimm B (2014b) Konclude: system description. J Web Semant 27:78–85CrossRefGoogle Scholar
  65. Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14:147–176MathSciNetCrossRefGoogle Scholar
  66. Stuckenschmidt H, Ceri S, Valle ED, van Harmelen F (2010) Towards expressive stream reasoning. In: Semantic challenges in sensor networks, no. 10042 in Dagstuhl seminar proceedingsGoogle Scholar
  67. Suntisrivaraporn B, Qi G, Ji Q, Haase P (2008) A modularization-based approach to finding all justifications for OWL DL entailments. In: ASWC2008, pp 1–15Google Scholar
  68. Thomas E, Pan JZ, Ren Y (2010) TrOWL: tractable OWL 2 reasoning infrastructure. In: ESWC2010Google Scholar
  69. Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In: IJCAR2006, pp 292–297CrossRefGoogle Scholar
  70. Zhou Y, Grau BC, Horrocks I, Wu Z, Banerjee J (2013) Making the most of your triple store: query answering in OWL 2 using an RL reasoner. In: WWW2013, pp 1569–1580Google Scholar

Authors and Affiliations

  1. 1.University of AberdeenScotlandUK
  2. 2.Guangdong University of Foreign StudiesGuangdongChina

Section editors and affiliations

  • Philippe Cudré-Mauroux
    • 1
  • Olaf Hartig
    • 2
  1. 1.eXascale InfolabUniversity of FribourgFribourgSwitzerland
  2. 2.Linköping UniversityLinköpingSweden