Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Active Storage

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_309-1



In brief, Active Storage refers to an architectural hardware and software paradigm, based on co-location storage and compute units. Ideally, it will allow to execute application-defined data- or compute-intensive operations in situ, i.e., within (or close to) the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.

Over the last decade, we are witnessing a clear trend toward the fusion of the compute-intensive and the data-intensive paradigms on architectural, system, and application level. On the one hand, large computational tasks (e.g., simulations) tend to feed growing amounts of data into their complex computational models; on the other hand, database...


Actual Storage Pushdown Hybrid Memory Cube (HMC) Modern Workloads Powerful Processing Elements 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Acharya A, Uysal M, Saltz J (1998) Active disks: Programming model, algorithms and evaluation. In: Proceedings of the eighth international conference on architectural support for programming languages and operating systems, ASPLOS VIII, pp 81–91Google Scholar
  2. Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutorials 17(4):2317–2346CrossRefGoogle Scholar
  3. Ahn J, Yoo S, Mutlu O, Choi K (2015) PIM-enabled instructions: a low-overhead, locality-aware processing-in-memory architecture. In: Proceeding of 42nd annual international symposium on computer architecture (ISCA’15), pp 336–348Google Scholar
  4. Azarkhish E, Pfister C, Rossi D, Loi I, Benini L (2017) Logic-base interconnect design for near memory computing in the smart memory cube. IEEE Trans Very Large Scale Integr VLSI Syst 25:210–223CrossRefGoogle Scholar
  5. Babarinsa OO, Idreos S (2015) Jafar: near-data processing for databases. In: SIGMODGoogle Scholar
  6. Balasubramonian R (2016) Making the case for feature-rich memory systems: the march toward specialized systems. IEEE Solid-State Circuits Mag 8(2):57–65CrossRefGoogle Scholar
  7. Balasubramonian R, Chang J, Manning T, Moreno JH, Murphy R, Nair R, Swanson S (2014) Near-data processing: insights from a micro-46 workshop. IEEE Micro 34(4):36–42CrossRefGoogle Scholar
  8. Boral H, DeWitt DJ (1983) Database machines: an idea whose time has passed? A critique of the future of database machines. In: Leilich H-O, Missikoff M (eds) Database machines. Springer, Berlin/Heidelberg, pp 166–187CrossRefGoogle Scholar
  9. Boroumand A, Ghose S, Patel M, Hassan H, Lucia B, Hsieh K, Malladi KT, Zheng H, Mutlu O (2017) LazyPIM: an efficient cache coherence mechanism for processing-in-memory. IEEE Comput Archit Lett 16(1):46–50CrossRefGoogle Scholar
  10. Chen C, Chen Y (2012) Dynamic active storage for high performance I/O. In: 2012 41st international conference on Parallel Processing. IEEE, pp 379–388Google Scholar
  11. Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y (2016) PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 27–39Google Scholar
  12. Cho BY, Jeong WS, Oh D, Ro WW (2013a) Xsd: accelerating mapreduce by harnessing the GPU inside an SSD. In: WoNDP: 1st workshop on near-data processing in conjunction with IEEE MICRO-46Google Scholar
  13. Cho S, Park C, Oh H, Kim S, Yi Y, Ganger GR (2013b) Active disk meets flash: a case for intelligent SSDs. In: Proceeding of ICS, pp 91–102Google Scholar
  14. DeWitt D, Gray J (1992) Parallel database systems: the future of high performance database systems. Commun ACM 35(6):85–98CrossRefGoogle Scholar
  15. Do J, Kee YS, Patel JM, Park C, Park K, DeWitt DJ (2013) Query processing on smart SSDs: opportunities and challenges. In: Proceeding of SIGMOD, pp 1221–1230Google Scholar
  16. Drumond M, Daglis A, Mirzadeh N, Ustiugov D, Picorel J, Falsafi B, Grot B, Pnevmatikatos D (2017) The mondrian data engine. ACM SIGARCH Comput Archit News 45(2):639–651CrossRefGoogle Scholar
  17. Fan S, He Z, Tan H (2016) An active storage system with dynamic task assignment policy. In: 2016 12th international conference on natural computation fuzzy system and knowledge discovery (ICNC-FSKD 2016), pp 1421–1427Google Scholar
  18. Gao M, Ayers G, Kozyrakis C (2016a) Practical near-data processing for in-memory analytics frameworks. Parallel architecture and compilation techniques – Conference proceedings, PACT 2016-March, pp 113–124Google Scholar
  19. Gao M, Delimitrou C, Niu D, Malladi KT, Zheng H, Brennan B, Kozyrakis C (2016b) DRAF: a low-power DRAM-based reconfigurable acceleration fabric. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture. IEEE, pp 506–518Google Scholar
  20. Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C (2017) TETRIS: scalable and efficient neural network acceleration with 3D memory. ASPLOS 51(2):751–764Google Scholar
  21. Hall M, Kogge P, Koller J, Diniz P, Chame J, Draper J, LaCoss J, Granacki J, Brockman J, Srivastava A, Athas W, Freeh V, Shin J, Park J (1999) Mapping irregular applications to DIVA, a PIM-based data-intensive architecture. In: ACM/IEEE conference on supercomputing (SC 1999), p 57Google Scholar
  22. Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2011) Toward dark silicon in servers. IEEE Micro 31(4):6–15CrossRefGoogle Scholar
  23. Hsieh K, Ebrahim E, Kim G, Chatterjee N, O’Connor M, Vijaykumar N, Mutlu O, Keckler SW (2016) Transparent offloading and mapping (TOM): enabling programmer-transparent near-data processing in GPU systems. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 204–216Google Scholar
  24. István Z, Sidler D, Alonso G (2017) Caribou: intelligent distributed storage. Proc VLDB Endow 10(11): 1202–1213CrossRefGoogle Scholar
  25. Jo I, Bae DH, Yoon AS, Kang JU, Cho S, Lee DDG, Jeong J (2016) Yoursql: a high-performance database system leveraging in-storage computing. Proc VLDB Endow 9:924–935CrossRefGoogle Scholar
  26. Keeton K, Patterson DA, Hellerstein JM (1998) A case for intelligent disks (idisks). SIGMOD Rec 27(3):42–52CrossRefGoogle Scholar
  27. Kim G, Chatterjee N, O’Connor M, Hsieh K (2017a) Toward standardized near-data processing with unrestricted data placement for GPUs. In: Proceeding of international conference on high performance computing networking, storage and analysis (SC’17), pp 1–12Google Scholar
  28. Kim NS, Chen D, Xiong J, Hwu WMW (2017b) Heterogeneous computing meets near-memory acceleration and high-level synthesis in the post-moore era. IEEE Micro 37(4):10–18CrossRefGoogle Scholar
  29. Kim S, Oh H, Park C, Cho S, Lee SW, Moon B (2016) In-storage processing of database scans and joins. Inf Sci 327(C):183–200CrossRefGoogle Scholar
  30. Korinth J, Chevallerie Ddl, Koch A (2015) An open-source tool flow for the composition of reconfigurable hardware thread pool architectures. In: Proceedings of the 2015 IEEE 23rd annual international symposium on field-programmable custom computing machines (FCCM’15). IEEE Computer Society, Washington, DC, pp 195–198Google Scholar
  31. Kotra JB, Guttman D, Chidambaram Nachiappan N, Kandemir MT, Das CR (2017) Quantifying the potential benefits of on-chip near-data computing in manycore processors. In: 2017 IEEE 25th international symposium on modeling, analysis, and simulation of computer and telecommunication system, pp 198–209Google Scholar
  32. Lim H, Park G (2017) Triple engine processor (TEP): a heterogeneous near-memory processor for diverse kernel operations. ACM Ref ACM Trans Arch Code Optim Artic 14(4):1–25CrossRefGoogle Scholar
  33. Muramatsu B, Gierschi S, McMartin F, Weimar S, Klotz G (2004) If you build it, will they come? In: Proceeding of 2004 joint ACM/IEEE Conference on digital libraries (JCDL’04) p 396Google Scholar
  34. Najafi M, Sadoghi M, Jacobsen HA (2013) Flexible query processor on FPGAs. Proc VLDB Endow 6(12):1310–1313CrossRefGoogle Scholar
  35. Patterson D, Anderson T, Cardwell N, Fromm R, Keeton K, Kozyrakis C, Thomas R, Yelick K (1997) A case for intelligent ram. IEEE Micro 17(2):34–44CrossRefGoogle Scholar
  36. Petrov I, Almeida G, Buchmann A, Ulrich G (2010) Building large storage based on flash disks. In: Proceeding of ADMS’10Google Scholar
  37. Picorel J, Jevdjic D, Falsafi B (2017) Near-Memory Address Translation. In: 2017 26th international conference on Parallel architectures and compilation techniques, pp 303–317, 1612.00445Google Scholar
  38. Ren Y, Wu X, Zhang L, Wang Y, Zhang W, Wang Z, Hack M, Jiang S (2017) iRDMA: efficient use of RDMA in distributed deep learning systems. In: IEEE 19th international conference on high performance computing and communications, pp 231–238Google Scholar
  39. Riedel E, Gibson GA, Faloutsos C (1998) Active storage for large-scale data mining and multimedia. In: Proceedings of the 24rd international conference on very large data bases (VLDB’98), pp 62–73Google Scholar
  40. Sadoghi M, Javed R, Tarafdar N, Singh H, Palaniappan R, Jacobsen HA (2012) Multi-query stream processing on FPGAs. In: 2012 IEEE 28th international conference on data engineering, pp 1229–1232Google Scholar
  41. Seshadri S, Gahagan M, Bhaskaran S, Bunker T, De A, Jin Y, Liu Y, Swanson S (2014) Willow: a user-programmable SSD. In: Proceeding of OSDI’14Google Scholar
  42. Sivathanu M, Bairavasundaram LN, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2005) Database-aware semantically-smart storage. In: Proceedings of the 4th conference on USENIX conference on file and storage technologies (FAST’05), vol 4, pp 18–18Google Scholar
  43. Sykora J, Koutny T (2010) Enhancing performance of networking applications by IP tunneling through active networks. In: 9th international conference on networks (ICN 2010), pp 361–364Google Scholar
  44. Szalay A, Gray J (2006) 2020 computing: science in an exponential world. Nature 440:413–414CrossRefGoogle Scholar
  45. Tennenhouse DL, Wetherall DJ (1996) Towards an active network architecture. ACM SIGCOMM Comput Commun Rev 26(2):5–17CrossRefGoogle Scholar
  46. Tiwari D, Boboila S, Vazhkudai SS, Kim Y, Ma X, Desnoyers PJ, Solihin Y (2013) Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: Proceeding of FAST, pp 119–132Google Scholar
  47. Vermij E, Fiorin L, Jongerius R, Hagleitner C, Lunteren JV, Bertels K (2017) An architecture for integrated near-data processors. ACM Trans Archit Code Optim 14(3):30:1–30:25CrossRefGoogle Scholar
  48. Wang Y, Zhang M, Yang J (2017) Towards memory-efficient processing-in-memory architecture for convolutional neural networks. In: Proceeding 18th ACM SIGPLAN/SIGBED conference on languages compilers, and tools for embedded systems (LCTES 2017), pp 81–90Google Scholar
  49. Woods L, Teubner J, Alonso G (2013) Less watts, more performance: an intelligent storage engine for data appliances. In: Proceeding of SIGMOD, pp 1073–1076Google Scholar
  50. Woods L, István Z, Alonso G (2014) Ibex: an intelligent storage engine with support for advanced sql offloading. Proc VLDB Endow 7(11):963–974CrossRefGoogle Scholar
  51. Wulf WA, McKee SA (1995) Hitting the memory wall: implications of the obvious. SIGARCH CAN 23(1):20–24Google Scholar
  52. Xi SL, Babarinsa O, Athanassoulis M, Idreos S (2015) Beyond the wall: near-data processing for databases. In: Proceeding of DaMoN, pp 2:1–2:10Google Scholar

Authors and Affiliations

  1. 1.Data Management LabReutlingen UniversityReutlingenGermany
  2. 2.Embedded Systems and Applications GroupTU DarmstadtDarmstadtGermany
  3. 3.Databases and Distributed Systems GroupTU DarmstadtDarmstadtGermany

Section editors and affiliations

  • Mohammad Sadoghi

There are no affiliations available