Encyclopedia of Big Data Technologies

Living Edition
| Editors: Sherif Sakr, Albert Zomaya

Analytics Benchmarks

  • Todor Ivanov
  • Roberto V. Zicari
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-63962-8_113-1

Synonyms

Definition

The meaning of the word benchmark is (Andersen and Pettersen 1995) A predefined position, used as a reference point for taking measures against. There is no clear formal definition of analytics benchmarks.

Jim Gray (1992) describes the benchmarking as follows: “This quantitative comparison starts with the definition of a benchmark or workload. The benchmark is run on several different systems, and the performance and price of each system is measured and recorded. Performance is typically a throughput metric (work/second) and price is typically a five-year cost-of-ownership metric. Together, they give a price/performance ratio.” In short, we define that a software benchmark is a program used for comparison of software products/tools executing on a pre-configured hardware environment.

Analytics benchmarks are a type of...

This is a preview of subscription content, log in to check access.

References

  1. Abadi D, Babu S, Ozcan F, Pandis I (2015) Tutorial: SQL-on-Hadoop systems. PVLDB 8(12):2050–2051Google Scholar
  2. Agrawal D, Butt AR, Doshi K, Larriba-Pey J, Li M, Reiss FR, Raab F, Schiefer B, Suzumura T, Xia Y (2015) SparkBench – a spark performance testing suite. In: TPCTC, pp 26–44Google Scholar
  3. Alsubaiee S, Altowim Y, Altwaijry H, Behm A, Borkar VR, Bu Y, Carey MJ, Cetindil I, Cheelangi M, Faraaz K, Gabrielova E, Grover R, Heilbron Z, Kim Y, Li C, Li G, Ok JM, Onose N, Pirzadeh P, Tsotras VJ, Vernica R, Wen J, Westmann T (2014) Asterixdb: a scalable, open source BDMS. PVLDB 7(14):1905–1916Google Scholar
  4. Andersen B, Pettersen PG (1995) Benchmarking handbook. Champman & Hall, LondonGoogle Scholar
  5. Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Franklin MJ, Ghodsi A, Zaharia M (2015) Spark SQL: relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, Melbourne, 31 May–4 June 2015, pp 1383–1394Google Scholar
  6. Armstrong TG, Ponnekanti V, Borthakur D, Callaghan M (2013) Linkbench: a database benchmark based on the Facebook social graph. In: Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD 2013, New York, 22–27 June 2013, pp 1185–1196Google Scholar
  7. Bog A (2013) Benchmarking transaction and analytical processing systems: the creation of a mixed workload benchmark and its application. PhD thesis. http://d-nb.info/1033231886
  8. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015) Apache Flink™: stream and batch processing in a single engine. IEEE Data Eng Bull 38(4):28–38. http://sites.computer.org/debull/A15dec/p28.pdf Google Scholar
  9. Cattell R (2011) Scalable SQL and NoSQL data stores. SIGMOD Rec 39(4):12–27CrossRefGoogle Scholar
  10. Codd EF, Codd SB, Salley CT (1993) Providing OLAP (On-line analytical processing) to user-analysis: an IT mandate. White paperGoogle Scholar
  11. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on cloud computing, SoCC 2010, Indianapolis, 10–11 June 2010, pp 143–154Google Scholar
  12. Ferdman M, Adileh A, Koçberber YO, Volos S, Alisafaee M, Jevdjic D, Kaynak C, Popescu AD, Ailamaki A, Falsafi B (2012) Clearing the clouds: a study of emerging scale-out workloads on modern hardware. In: Proceedings of the 17th international conference on architectural support for programming languages and operating systems, ASPLOS, pp 37–48Google Scholar
  13. Ferrarons J, Adhana M, Colmenares C, Pietrowska S, Bentayeb F, Darmont J (2013) PRIMEBALL: a parallel processing framework benchmark for big data applications in the cloud. In: TPCTC, pp 109–124Google Scholar
  14. Ghazal A, Rabl T, Hu M, Raab F, Poess M, Crolotte A, Jacobsen H (2013) Bigbench: towards an industry standard benchmark for big data analytics. In: Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD 2013, New York, 22–27 June 2013, pp 1197–1208Google Scholar
  15. Ghazal A, Ivanov T, Kostamaa P, Crolotte A, Voong R, Al-Kateb M, Ghazal W, Zicari RV (2017) Bigbench V2: the new and improved bigbench. In: 33rd IEEE international conference on data engineering, ICDE 2017, San Diego, 19–22 Apr 2017, pp 1225–1236Google Scholar
  16. Gray J (1992) Benchmark handbook: for database and transaction processing systems. Morgan Kaufmann Publishers Inc., San FranciscozbMATHGoogle Scholar
  17. Han R, John LK, Zhan J (2018) Benchmarking big data systems: a review. IEEE Trans Serv Comput 11(3):580–597CrossRefGoogle Scholar
  18. Hellerstein JM, Ré C, Schoppmann F, Wang DZ, Fratkin E, Gorajek A, Ng KS, Welton C, Feng X, Li K, Kumar A (2012) The MADlib analytics library or MAD skills, the SQL. PVLDB 5(12):1700–1711Google Scholar
  19. Hockney RW (1996) The science of computer benchmarking. SIAM, PhiladelphiaCrossRefGoogle Scholar
  20. Hogan T (2009) Overview of TPC benchmark E: the next generation of OLTP benchmarks. In: Performance evaluation and benchmarking, first TPC technology conference, TPCTC 2009, Lyon, 24–28 Aug 2009, Revised Selected Papers, pp 84–98Google Scholar
  21. Hu H, Wen Y, Chua T, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRefGoogle Scholar
  22. Huang S, Huang J, Dai J, Xie T, Huang B (2010) The HiBench benchmark suite: characterization of the MapReduce-based data analysis. In: Workshops proceedings of the 26th IEEE ICDE international conference on data engineering, pp 41–51Google Scholar
  23. Huppler K (2009) The art of building a good benchmark. In: Nambiar RO, Poess M (eds) Performance evaluation and benchmarking. Springer, Berlin/Heidelberg, pp 18–30Google Scholar
  24. Ivanov T, Rabl T, Poess M, Queralt A, Poelman J, Poggi N, Buell J (2015) Big data benchmark compendium. In: TPCTC, pp 135–155Google Scholar
  25. Kemper A, Neumann T (2011) Hyper: a hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: Proceedings of the 27th international conference on data engineering, ICDE 2011, Hannover, 11–16 Apr 2011, pp 195–206Google Scholar
  26. Kim K, Jeon K, Han H, Kim SG, Jung H, Yeom HY (2008) Mrbench: a benchmark for mapreduce framework. In: 14th international conference on parallel and distributed systems, ICPADS 2008, Melbourne, 8–10 Dec 2008, pp 11–18Google Scholar
  27. Kornacker M, Behm A, Bittorf V, Bobrovytsky T, Ching C, Choi A, Erickson J, Grund M, Hecht D, Jacobs M, Joshi I, Kuff L, Kumar D, Leblang A, Li N, Pandis I, Robinson H, Rorke D, Rus S, Russell J, Tsirogiannis D, Wanderman-Milne S, Yoder M (2015) Impala: a modern, open-source SQL engine for Hadoop. In: CIDR 2015, seventh biennial conference on innovative data systems research, Asilomar, 4–7 Jan 2015, Online proceedingsGoogle Scholar
  28. Li M, Tan J, Wang Y, Zhang L, Salapura V (2015) SparkBench: a comprehensive benchmarking suite for in memory data analytic platform spark. In: Proceedings of the 12th ACM international conference on computing frontiers, pp 53:1–53:8Google Scholar
  29. Luo C, Zhan J, Jia Z, Wang L, Lu G, Zhang L, Xu C, Sun N (2012) CloudRank-D: benchmarking and ranking cloud computing systems for data processing applications. Front Comp Sci 6(4):347–362MathSciNetGoogle Scholar
  30. Meng X, Bradley JK, Yavuz B, Sparks ER, Venkataraman S, Liu D, Freeman J, Tsai DB, Amde M, Owen S, Xin D, Xin R, Franklin MJ, Zadeh R, Zaharia M, Talwalkar A (2016) Mllib: machine learning in Apache spark. J Mach Learn Res 17:34:1–34:7Google Scholar
  31. Nambiar R (2014) Benchmarking big data systems: introducing TPC express benchmark HS. In: Big data benchmarking – 5th international workshop, WBDB 2014, Potsdam, 5–6 Aug 2014, Revised Selected Papers, pp 24–28CrossRefGoogle Scholar
  32. Nambiar RO, Poess M (2006) The making of TPC-DS. In: Proceedings of the 32nd international conference on very large data bases, Seoul, 12–15 Sept 2006, pp 1049–1058Google Scholar
  33. Nambiar R, Chitor R, Joshi A (2012) Data management – a look back and a look ahead. In: Specifying big data benchmarks – first workshop, WBDB 2012, San Jose, 8–9 May 2012, and second workshop, WBDB 2012, Pune, 17–18 Dec 2012, Revised Selected Papers, pp 11–19CrossRefGoogle Scholar
  34. Özcan F, Tian Y, Tözün P (2017) Hybrid transactional/analytical processing: a survey. In: Proceedings of the 2017 ACM international conference on management of data, SIGMOD conference 2017, Chicago, 14–19 May 2017, pp 1771–1775Google Scholar
  35. Patil S, Polte M, Ren K, Tantisiriroj W, Xiao L, López J, Gibson G, Fuchs A, Rinaldi B (2011) YCSB++: benchmarking and performance debugging advanced features in scalable table stores. In: ACM symposium on cloud computing in conjunction with SOSP 2011, SOCC’11, Cascais, 26–28 Oct 2011, p 9Google Scholar
  36. Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden S, Stonebraker M (2009) A comparison of approaches to large-scale data analysis. In: Proceedings of the ACM SIGMOD international conference on management of data, SIGMOD 2009, Providence, 29 June–2 July 2009, pp 165–178Google Scholar
  37. Pirzadeh P, Carey MJ, Westmann T (2015) BigFUN: a performance study of big data management system functionality. In: 2015 IEEE international conference on big data, pp 507–514Google Scholar
  38. Poess M (2012) Tpc’s benchmark development model: making the first industry standard benchmark on big data a success. In: Specifying big data benchmarks – first workshop, WBDB 2012, San Jose, 8–9 May 2012, and second workshop, WBDB 2012, Pune, 17–18 Dec 2012, Revised Selected Papers, pp 1–10Google Scholar
  39. Poess M, Rabl T, Jacobsen H, Caufield B (2014) TPC-DI: the first industry benchmark for data integration. PVLDB 7(13):1367–1378Google Scholar
  40. Poess M, Rabl T, Jacobsen H (2017) Analysis of TPC-DS: the first standard benchmark for SQL-based big data systems. In: Proceedings of the 2017 symposium on cloud computing, SoCC 2017, Santa Clara, 24–27 Sept 2017, pp 573–585Google Scholar
  41. Pöss M, Floyd C (2000) New TPC benchmarks for decision support and web commerce. SIGMOD Rec 29(4):64–71CrossRefGoogle Scholar
  42. Pöss M, Nambiar RO, Walrath D (2007) Why you should run TPC-DS: a workload analysis. In: Proceedings of the 33rd international conference on very large data bases, University of Vienna, 23–27 Sept 2007, pp 1138–1149Google Scholar
  43. Raab F (1993) TPC-C – the standard benchmark for online transaction processing (OLTP). In: Gray J (ed) The benchmark handbook for database and transaction systems, 2nd edn. Morgan Kaufmann, San MateoGoogle Scholar
  44. Rockart JF, Ball L, Bullen CV (1982) Future role of the information systems executive. MIS Q 6(4):1–14CrossRefGoogle Scholar
  45. Sakr S, Liu A, Fayoumi AG (2013) The family of MapReduce and large-scale data processing systems. ACM Comput Surv 46(1):11:1–11:44CrossRefGoogle Scholar
  46. Sangroya A, Serrano D, Bouchenak S (2012) MRBS: towards dependability benchmarking for Hadoop MapReduce. In: Euro-Par: parallel processing workshops, pp 3–12Google Scholar
  47. Sethuraman P, Taheri HR (2010) TPC-V: a benchmark for evaluating the performance of database applications in virtual environments. In: Performance evaluation, measurement and characterization of complex systems – second TPC technology conference, TPCTC 2010, Singapore, 13–17 Sept 2010. Revised Selected Papers, pp 121–135CrossRefGoogle Scholar
  48. Shim JP, Warkentin M, Courtney JF, Power DJ, Sharda R, Carlsson C (2002) Past, present, and future of decision support technology. Decis Support Syst 33(2):111–126CrossRefGoogle Scholar
  49. SPEC (2018) www.spec.org/
  50. Tensorflow (2018) https://tensorflow.org
  51. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R (2009) Hive – a warehousing solution over a map-reduce framework. PVLDB 2(2):1626–1629Google Scholar
  52. TPC (2018) www.tpc.org/
  53. Wang L, Zhan J, Luo C, Zhu Y, Yang Q, He Y, Gao W, Jia Z, Shi Y, Zhang S, Zheng C, Lu G, Zhan K, Li X, Qiu B (2014) BigDataBench: a big data benchmark suite from internet services. In: 20th IEEE international symposium on high performance computer architecture, HPCA 2014, pp 488–499Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Frankfurt Big Data LabGoethe University FrankfurtFrankfurtGermany

Section editors and affiliations

  • Meikel Poess
    • 1
  • Tilmann Rabl
    • 2
  1. 1.Server TechnologiesOracleRedwood ShoresUSA
  2. 2.Database Systems and Information Management GroupTechnische Universität BerlinBerlinGermany