Skip to main content

Timing the Brain to Time the Mind: Critical Contributions of Time-Resolved Neuroimaging for Temporal Cognition

  • Living reference work entry
  • First Online:
Book cover Magnetoencephalography

Abstract

Time is a loaded concept, which cognitive neuroscientists have to consider from two major viewpoints simultaneously: a physicalist viewpoint consisting in providing refined descriptions and characterizations of the complex dynamical system, that is, the brain, and a psychological viewpoint consisting in understanding how different temporal phenomenologies (perceiving duration, ordering events in time, thinking about the past or the future, etc.) relate and map onto the described brain dynamics. In this chapter, we wish to emphasize the major conceptual differences between timing, seen as the inherent property of all neural processes dedicated to perception, action, and cognition, and time perception, or more generally temporal cognition, which specifically targets how the brain represents the temporal structure of events and of our environment, implicitly or explicitly. If techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) have been systematically used for timing, there is a surprising paucity of studies specifically focusing on temporal cognition. Nevertheless, the field is in full bloom, providing an adequate momentum for researchers to embrace MEG and EEG as techniques of choice to address their research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrian ED (1944) Brain rhythms. Nature 153:360–362

    Article  Google Scholar 

  • Akatsuka K, Wasaka T, Nakata H, Inui K, Hoshiyama M, Kakigi R (2005) Mismatch responses related to temporal discrimination of somatosensory stimulation. Clin Neurophysiol 116(8):1930–1937

    Article  Google Scholar 

  • Allman MJ, Teki S, Griffiths TD, Meck WH (2014) Properties of the internal clock: first-and second-order principles of subjective time. Annu Rev Psychol 65:743–771

    Article  Google Scholar 

  • Amenedo E, Escera C (2000) The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. Eur J Neurosci 12(7):2570–2574

    Article  Google Scholar 

  • Anliker J (1963) Variations in alpha voltage of the electroencephalogram and time perception. Science 140(3573):1307–1309

    Article  Google Scholar 

  • Arnal LH (2012) Predicting ‘when’ using the motor system’s beta-band oscillations. Front Hum Neurosci 6. https://doi.org/10.3389/fnhum.2012.00225

  • Arnal LH, Giraud A-L (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16(7):390–398

    Article  Google Scholar 

  • Arnal LH, Doelling K, Poeppel D (2015) Delta-beta coupled oscillations underlie temporal prediction accuracy. Cereb Cortex (New York: 1991) 25(9):3077–3085. https://doi.org/10.1093/cercor/bhu103

    Article  Google Scholar 

  • Auksztulewicz R, Friston KJ, Nobre AC (2017) Task relevance modulates the behavioural and neural effects of sensory predictions. PLoS Biol 15(12):e2003143. https://doi.org/10.1371/journal.pbio.2003143

    Article  Google Scholar 

  • Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289

    Article  Google Scholar 

  • Barlow JS, Brazier MAB (1957) The pacing of EEG potentials of alpha frequency by low rates of repetitive flash in man. Electroencephalogr Clin Neurophysiol 9(1):161

    Google Scholar 

  • Barne LC, Claessens PME, Reyes MB, Caetano MS, Cravo AM (2017) Low-frequency cortical oscillations are modulated by temporal prediction and temporal error coding. NeuroImage 146:40–46. https://doi.org/10.1016/j.neuroimage.2016.11.028

    Article  Google Scholar 

  • Bartolo R, Merchant H (2015) β oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey. J Neurosci 35(11):4635–4640

    Article  Google Scholar 

  • Bartolo R, Prado L, Merchant H (2014) Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J Neurosci 34(11):3910–3923

    Article  Google Scholar 

  • Battelli L, Pascual-Leone A, Cavanagh P (2007) The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci 11(5):204–210. https://doi.org/10.1016/j.tics.2007.03.001

    Article  Google Scholar 

  • Bendixen A, Grimm S, Schröger E (2005) Human auditory event-related potentials predict duration judgments. Neurosci Lett 383(3):284–288

    Article  Google Scholar 

  • Berger H (1929) Über das elektrenkephalogramm des menschen. Archiv Psychiatr Nervenkr 87(1):527–570

    Article  Google Scholar 

  • Bergson H (1889) 1913. Time and free will: an essay on the immediate data of conscious ness. Trans

    Google Scholar 

  • Bernasconi F, Manuel AL, Murray MM, Spierer L (2011) Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy. Int J Psychophysiol 79(2):244–248

    Article  Google Scholar 

  • Besle J, Schevon CA, Mehta AD, Lakatos P, Goodman RR, McKhann GM, Emerson RG, Schroeder CE (2011) Tuning of the human neocortex to the temporal dynamics of attended events. J Neurosci 31(9):3176–3185. https://doi.org/10.1523/JNEUROSCI.4518-10.2011

    Article  Google Scholar 

  • Bidet-Caulet A, Barbe P-G, Roux S, Viswanath H, Barthélémy C, Bruneau N, Knight RT, Bonnet-Brilhault F (2012) Dynamics of anticipatory mechanisms during predictive context processing. Eur J Neurosci 36(7):2996–3004. https://doi.org/10.1111/j.1460-9568.2012.08223.x

    Article  Google Scholar 

  • Block RA, Zakay D (1997) Prospective and retrospective duration judgments: a meta-analytic review. Psychon Bull Rev 4(2):184–197

    Article  Google Scholar 

  • Boemio AB (2003) The perceptual representation of acoustic temporal structure. Doctoral dissertation, University of Maryland, College Park

    Google Scholar 

  • Brenner MW (1957) The developmental study of apparent movement. Q J Exp Psychol 9(3):169–174

    Article  Google Scholar 

  • Breska A, Deouell LY (2017) Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol 15(2):e2001665

    Article  Google Scholar 

  • Bruno A, Ng E, Johnston A (2013) Motion-direction specificity for adaptation-induced duration compression depends on temporal frequency. J Vis 13(12):19–19

    Article  Google Scholar 

  • Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1831–1840

    Article  Google Scholar 

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755

    Article  Google Scholar 

  • Buonomano DV (2007) The biology of time across different scales. Nat Chem Biol 3(10):594

    Article  Google Scholar 

  • Buonomano D (2017) Your brain is a time machine: the neuroscience and physics of time. W. W. Norton & Company

    Google Scholar 

  • Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29(24):7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009

    Article  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(3):751–764

    Article  Google Scholar 

  • Cahoon RL (1969) Physiological arousal and time estimation. Percept Mot Skills 28(1):259–268

    Article  Google Scholar 

  • Caton R (1875) Electrical currents of the brain. J Nerv Ment Dis 2(4):610

    Google Scholar 

  • Catts SV, Shelley AM, Ward PB, Liebert B (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152(2):213

    Article  Google Scholar 

  • Cecere R, Rees G, Romei V (2015) Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol 25(2):231–235

    Article  Google Scholar 

  • Chakravarthi R, VanRullen R (2012) Conscious updating is a rhythmic process. Proc Natl Acad Sci 109(26):10599–10604

    Article  Google Scholar 

  • Chang A, Bosnyak DJ, Trainor LJ (2018) Beta oscillatory power modulation reflects the predictability of pitch change. Cortex 106:248–260

    Article  Google Scholar 

  • Church RM (1984) Properties of the internal clock. Ann N Y Acad Sci 423(1):566–582

    Article  Google Scholar 

  • Church RM, Broadbent HA (1990) Alternative representations of time, number, and rate. Cognition 37(1–2):55–81

    Article  Google Scholar 

  • Colin C, Hoonhorst I, Markessis E, Radeau M, De Tourtchaninoff M, Foucher A, Collet G, Deltenre P (2009) Mismatch negativity (MMN) evoked by sound duration contrasts: an unexpected major effect of deviance direction on amplitudes. Clin Neurophysiol 120(1):51–59

    Article  Google Scholar 

  • Correa A, Lupiáñez J, Madrid E, Tudela P (2006) Temporal attention enhances early visual processing: a review and new evidence from event-related potentials. Brain Res 1076(1):116–128. https://doi.org/10.1016/j.brainres.2005.11.074

    Article  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and FMRI. J Neurosci 18(18):7426–7435

    Article  Google Scholar 

  • Coull JT, Nobre AC (2008) Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol 18(2):137–144

    Article  Google Scholar 

  • Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2011) Endogenous modulation of low frequency oscillations by temporal expectations. J Neurophysiol 106(6):2964–2972. https://doi.org/10.1152/jn.00157.2011

    Article  Google Scholar 

  • Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2013) Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J Neurosci 33(9):4002–4010. https://doi.org/10.1523/JNEUROSCI.4675-12.2013

    Article  Google Scholar 

  • Deecke L, Weinberg H, Brickett P (1982) Magnetic fields of the human brain accompanying voluntary movement: Bereitschaftsmagnetfeld. Exp Brain Res 48(1):144–148

    Google Scholar 

  • de Lange FP, Heilbron M, Kok P (2018) How do expectations shape perception? Trends Cogn Sci 22(9):764–779. https://doi.org/10.1016/j.tics.2018.06.002

    Article  Google Scholar 

  • Dennett DC, Kinsbourne M (1992) Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15(2):183–201

    Article  Google Scholar 

  • Di Luca M, Machulla TK, Ernst MO (2009) Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency. J Vis 9(12):7–7

    Article  Google Scholar 

  • Ding N, Melloni L, Zhang H, Tian X, Poeppel D (2016) Cortical tracking of hierarchical linguistic structures in connected speech. Nat Neurosci 19(1):158

    Article  Google Scholar 

  • Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage 85:761–768

    Article  Google Scholar 

  • Doherty JR, Rao A, Marsel Mesulam M, Nobre AC (2005) Synergistic effect of combined temporal and spatial expectations on visual attention. J Neurosci 25(36):8259–8266. https://doi.org/10.1523/JNEUROSCI.1821-05.2005

    Article  Google Scholar 

  • Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr Biol 19(18):1581–1585

    Article  Google Scholar 

  • Doupe AJ, Perkel DJ, Reiner A, Stern EA (2005) Birdbrains could teach basal ganglia research a new song. Trends Neurosci 28(7):353–363

    Article  Google Scholar 

  • Eagleman DM, Pariyadath V (2009) Is subjective duration a signature of coding efficiency? Philos Trans R Soc B Biol Sci 364(1525):1841–1851

    Article  Google Scholar 

  • Elbert T, Rockstroh B, Hampson S, Pantev C, Hoke M (1994) The magnetic counterpart of the contingent negative variation. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 92(3):262–272

    Article  Google Scholar 

  • Ellingson RJ (1956) Brain waves and problems of psychology. Psychol Bull 53(1):1

    Article  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2(10):704

    Article  Google Scholar 

  • Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn Brain Res 20(3):376–383

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2006) Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process 7(3):135–162

    Article  Google Scholar 

  • Fraisse P (1988) Time perception and evoked potentials. Paris V, Lab de Psychologie Expérimentale, Paris

    Google Scholar 

  • Franciotti R, Brancucci A, Della Penna S, Onofrj M, Tommasi L (2011) Neuromagnetic responses reveal the cortical timing of audiovisual synchrony. Neuroscience 193:182–192

    Article  Google Scholar 

  • Freeman WJ (2000) Mesoscopic neurodynamics: from neuron to brain. J Physiol Paris 94(5–6):303–322

    Article  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond Ser B Biol Sci 360(1456):815–836. https://doi.org/10.1098/rstb.2005.1622

    Article  Google Scholar 

  • Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802

    Article  Google Scholar 

  • Fujioka T, Ross B, Trainor LJ (2015) Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J Neurosci 35(45):15187–15198

    Article  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida SY (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7(7):773

    Article  Google Scholar 

  • Gaillard AW, Näätänen R (1973) Slow potential changes and choice reaction time as a function of interstimulus interval. Acta Psychol 37(3):173–186

    Article  Google Scholar 

  • Gallistel CR (1990) The organization of learning. The MIT Press, Cambridge, MA

    Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120(3):453–463

    Article  Google Scholar 

  • Gho M, Varela FJ (1988) A quantitative assessment of the dependency of the visual temporal frame upon the cortical rhythm. J Physiol 83(2):95–101

    Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psycho rev, 84(3):279

    Article  Google Scholar 

  • Ghose GM, Maunsell JH (2002) Attentional modulation in visual cortex depends on task timing. Nature 419(6907):616

    Article  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423(1):52–77

    Article  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7(2):170–184

    Article  Google Scholar 

  • Giraud AL, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15(4):511

    Article  Google Scholar 

  • Glicksohn J, Ohana AB, Dotan TB, Goldstein A, Donchin O (2009) Time production and EEG alpha revisited. NeuroQuantology 7(1):138–151

    Article  Google Scholar 

  • Gomez-Ramirez M, Kelly SP, Molholm S, Sehatpour P, Schwartz TH, Foxe JJ (2011) Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: a human electrocorticographic investigation. J Neurosci 31(50):18556–18567

    Article  Google Scholar 

  • Gooddy W, Reinhold M (1954) The function of the cerebral cortex. Brain 77(3):416–426

    Article  Google Scholar 

  • Gooddy W (1958) Time and the nervous system the brain as a clock: disorders of the clocks: an outline with comments. Lancet 274(7113):1155–1156

    Article  Google Scholar 

  • Gotts SJ, Chow CC, Martin A (2012) Repetition priming and repetition suppression: a case for enhanced efficiency through neural synchronization. Cogn Neurosci 3(3–4):227–237

    Article  Google Scholar 

  • Grabot L, Kösem A, Azizi L, Van Wassenhove V (2017) Prestimulus alpha oscillations and the temporal sequencing of audiovisual events. J Cogn Neurosci 29(9):1566–1582

    Article  Google Scholar 

  • Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19(5):893–906

    Article  Google Scholar 

  • Grahn JA, Rowe JB (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci 29(23):7540–7548

    Article  Google Scholar 

  • Grahn JA, Rowe JB (2013) Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex 23(4):913–921

    Article  Google Scholar 

  • Gu BM, van Rijn H, Meck WH (2015) Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci Biobehav Rev 48:160–185

    Article  Google Scholar 

  • Gur M, Snodderly DM (1997) A dissociation between brain activity and perception: chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vis Res 37(4):377–382

    Article  Google Scholar 

  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15(1):207–216

    Article  Google Scholar 

  • Haas LF (2003) Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg Psychiatry 74:9

    Article  Google Scholar 

  • Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC (2014) Inter-and intra-individual variability in alpha peak frequency. NeuroImage 92:46–55

    Article  Google Scholar 

  • Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml KH (2007) Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37(4):1465–1473

    Article  Google Scholar 

  • Hari R, Parkkonen L (2015) The brain timewise: how timing shapes and supports brain function. Philos Trans R Soc B 370(1668):20140170

    Article  Google Scholar 

  • Hari R, Pelizzone M, Mäkelä JP, Hällström J, Leinonen L (1987) Neuromagnetic responses of the human auditory cortex to on-and offsets of noise bursts. Audiology 26:31–43

    Article  Google Scholar 

  • Hari R, Parkkonen L, Nangini C (2010) The brain in time: insights from neuromagnetic recordings. Ann N Y Acad Sci 1191(1):89–109

    Article  Google Scholar 

  • Hashimoto Y, Yotsumoto Y (2018) The amount of time dilation for visual flickers corresponds to the amount of neural entrainments measured by EEG. Front Comput Neurosci 12:30

    Article  Google Scholar 

  • Heideman SG, van Ede F, Nobre AC (2017) Temporal alignment of anticipatory motor cortical beta lateralisation in hidden visual-motor sequences. Eur J Neurosci. https://doi.org/10.1111/ejn.13700

    Article  Google Scholar 

  • Heideman SG, Rohenkohl G, Chauvin JJ, Palmer CE, van Ede F, Nobre AC (2018) Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. NeuroImage 178(September):46–56. https://doi.org/10.1016/j.neuroimage.2018.05.002

    Article  Google Scholar 

  • Henry MJ, McAuley JD (2013) Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis. PLoS One 8(8):e70646

    Article  Google Scholar 

  • Henry MJ, Obleser J (2012) Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc Natl Acad Sci 109(49):20095–20100. https://doi.org/10.1073/pnas.1213390109

    Article  Google Scholar 

  • Henry MJ, Herrmann B, Obleser J (2014) Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc Natl Acad Sci 111(41):14935–14940. https://doi.org/10.1073/pnas.1408741111

    Article  Google Scholar 

  • Henry MJ, Herrmann B, Obleser J (2016) Neural microstates govern perception of auditory input without rhythmic structure. J Neurosci 36(3):860–871. https://doi.org/10.1523/JNEUROSCI.2191-15.2016

    Article  Google Scholar 

  • Herbst SK, van der Meer E, Busch NA (2012) Attentional selection dilates perceived duration. Perception 41(8):883–900

    Article  Google Scholar 

  • Herbst SK, Chaumon M, Penney TB, Busch NA (2015) Flicker-induced time dilation does not modulate EEG correlates of temporal encoding. Brain Topogr 28(4):559–569

    Article  Google Scholar 

  • Herbst SK, Obleser J (2017) Implicit variations of temporal predictability: shaping the neural oscillatory and behavioural response. Neuropsychologia 101(July):141–152. https://doi.org/10.1016/j.neuropsychologia.2017.05.019

    Article  Google Scholar 

  • Herbst SK, Obleser J (2018) Implicit temporal predictability biases slow oscillatory phase in auditory cortex and enhances pitch discrimination sensitivity. bioRxiv, 410274

    Google Scholar 

  • Herbst SK, Javadi AH, van der Meer E, Busch NA (2013) How long depends on how fast – perceived flicker dilates subjective duration. PLoS One 8(10):e76074

    Article  Google Scholar 

  • Herbst SK, Fiedler L, Obleser J (2018) Tracking temporal hazard in the human electroencephalogram using a forward encoding model. Eneuro 5(2). https://doi.org/10.1523/ENEURO.0017-18.2018

    Article  Google Scholar 

  • Heron J, Roach NW, Whitaker D, Hanson JV (2010) Attention regulates the plasticity of multisensory timing. Eur J Neurosci 31(10):1755–1762

    Article  Google Scholar 

  • Herrmann B, Henry MJ, Haegens S, Obleser J (2015) Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. NeuroImage. http://www.sciencedirect.com/science/article/pii/S1053811915008253

  • Hoagland H (1933) The physiological control of judgments of duration: evidence for a chemical clock. J Gen Psychol 9(2):267–287

    Article  Google Scholar 

  • Hoagland H (1935) Pacemakers in relation to aspects of behavior. Macmillan, New York

    Google Scholar 

  • Holcombe A (2013) The temporal organization of perception. In: Handbook of perceptual organization, Oxford

    Google Scholar 

  • Holubář J (1969) The sense of time: an electrophysiological study of its mechanisms in man. MIT Press, Cambridge, MA

    Google Scholar 

  • Hsu Y-F, Hamalainen J, Waszak F (2014) Both attention and prediction are necessary for adaptive neuronal tuning in sensory processing. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00152

  • Indraccolo A, Spence C, Vatakis A, Harrar V (2016) Combined effects of motor response, sensory modality, and stimulus intensity on temporal reproduction. Exp Brain Res 234(5):1189–1198

    Article  Google Scholar 

  • Iversen JR, Repp BH, Patel AD (2009) Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci 1169(1):58–73

    Article  Google Scholar 

  • Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin Neurobiol 6(6):851–857

    Article  Google Scholar 

  • Ivry RB, Schlerf JE (2008) Dedicated and intrinsic models of time perception. Trends Cogn Sci 12(7):273–280

    Article  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14(2):225–232

    Article  Google Scholar 

  • Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143

    Article  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8(2):234–241. https://doi.org/10.1038/nn1386

    Article  Google Scholar 

  • Jaramillo M, Alku P, Paavilainen P (1999) An event-related potential (ERP) study of duration changes in speech and non-speech sounds. Neuroreport 10(16):3301–3305

    Article  Google Scholar 

  • Jaramillo S, Zador AM (2011) The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat Neurosci 14(2):246

    Article  Google Scholar 

  • Jaramillo M, Paavilainen P, Näätänen R (2000) Mismatch negativity and behavioural discrimination in humans as a function of the magnitude of change in sound duration. Neurosci Lett 290(2):101–104

    Article  Google Scholar 

  • Jasper HH (1937) Electrical signs of cortical activity. Psychol Bull 34(7):411

    Article  Google Scholar 

  • Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nat Neurosci 13(8):1020

    Article  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  Google Scholar 

  • Johnston A, Arnold DH, Nishida S (2006) Spatially localized distortions of event time. Curr Biol 16(5):472–479

    Article  Google Scholar 

  • Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci 91(24):11748–11751

    Article  Google Scholar 

  • Jones MR (1976) Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol Rev 83(5):323–355

    Article  Google Scholar 

  • Jones MR, Boltz M (1989) Dynamic attending and responses to time. Psychol Rev 96(3):459

    Article  Google Scholar 

  • Jones MR, Moynihan H, MacKenzie N, Puente J (2002) Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci 13(4):313–319. https://doi.org/10.1111/1467-9280.00458

    Article  Google Scholar 

  • Joutsiniemi SL, Ilvonen T, Sinkkonen J, Huotilainen M, Tervaniemi M, Lehtokoski A, Rinne T, Näätänen R (1998) The mismatch negativity for duration decrement of auditory stimuli in healthy subjects. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 108(2):154–159

    Article  Google Scholar 

  • Kaganovich N, Schumaker J (2016) Electrophysiological correlates of individual differences in perception of audiovisual temporal asynchrony. Neuropsychologia 86:119–130

    Article  Google Scholar 

  • Kambe J, Kakimoto Y, Araki O (2015) Phase reset affects auditory-visual simultaneity judgment. Cogn Neurodyn 9(5):487–493

    Article  Google Scholar 

  • Kanai R, Paffen CL, Hogendoorn H, Verstraten FA (2006) Time dilation in dynamic visual display. J Vis 6(12):8–8

    Article  Google Scholar 

  • Karmarkar UR, Buonomano DV (2007) Timing in the absence of clocks: encoding time in neural network states. Neuron 53(3):427–438

    Article  Google Scholar 

  • Kaukoranta E, Sams M, Hari R, Hämäläinen M, Näätänen R (1989) Reactions of human auditory cortex to a change in tone duration. Hear Res 41(1):15–21

    Article  Google Scholar 

  • Keil J, Pomper U, Senkowski D (2016) Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction. Cortex 74(January):277–288. https://doi.org/10.1016/j.cortex.2015.10.023

    Article  Google Scholar 

  • Kiebel SJ, Daunizeau J, Friston KJ (2008) A hierarchy of time-scales and the brain. PLoS Comput Biol 4(11):e1000209

    Article  Google Scholar 

  • Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A (2013) The ups and downs of beta oscillations in sensorimotor cortex. Exp Neurol 245:15–26

    Article  Google Scholar 

  • Kim E, McAuley JD (2013) Effects of pitch distance and likelihood on the perceived duration of deviant auditory events. Atten Percept Psychophys 75(7):1547–1558

    Article  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195

    Article  Google Scholar 

  • Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617

    Article  Google Scholar 

  • Kononowicz TW, Van Rijn H (2011) Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci 5:48

    Google Scholar 

  • Kononowicz TW, Roger C, van Wassenhove V (Imprint) Temporal metacognition as the decoding of self-generated brain dynamics. Cereb Cortex, https://doi.org/10.1093/cercor/bhy318

  • Kononowicz TW, Penney TB (2016) The contingent negative variation (CNV): timing isnt everything. Curr Opin Behav Sci 8:231–237

    Article  Google Scholar 

  • Kononowicz TW, van Rijn H (2014) Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci 34(8):2931–2939

    Article  Google Scholar 

  • Kononowicz TW, van Rijn H (2015) Single trial beta oscillations index time estimation. Neuropsychologia 75:381–389

    Article  Google Scholar 

  • Kononowicz TW, van Wassenhove V (2016) In search of oscillatory traces of the internal clock. Front Psychol 7:224

    Article  Google Scholar 

  • Kononowicz TW, Sander T, van Rijn H (2015) Neuroelectromagnetic signatures of the reproduction of supra-second durations. Neuropsychologia 75:201–213

    Article  Google Scholar 

  • Kösem A, Van Wassenhove V (2017) Distinct contributions of low-and high-frequency neural oscillations to speech comprehension. Lang Cogn Neurosci 32(5):536–544

    Article  Google Scholar 

  • Kösem A, Gramfort A, van Wassenhove V (2014) Encoding of event timing in the phase of neural oscillations. NeuroImage 92:274–284

    Article  Google Scholar 

  • Kösem A, Basirat A, Azizi L, van Wassenhove V (2016) High-frequency neural activity predicts word parsing in ambiguous speech streams. J Neurophysiol 116(6):2497–2512

    Article  Google Scholar 

  • Kösem A, Bosker HR, Takashima A, Meyer A, Jensen O, Hagoort P (2018) Neural entrainment determines the words we hear. Curr Biol. https://doi.org/10.1016/j.cub.2018.07.023

    Article  Google Scholar 

  • Kotz SA, Ravignani A, Fitch WT (2018) The evolution of rhythm processing. Trends Cogn Sci 22(10):896–910

    Article  Google Scholar 

  • Kristofferson AB (1967) Attention and psychophysical time. Acta Psychol 27:93–100

    Article  Google Scholar 

  • Kulashekhar S, Pekkola J, Palva JM, Palva S (2016) The role of cortical beta oscillations in time estimation. Hum Brain Mapp 37(9):3262–3281

    Article  Google Scholar 

  • Laje R, Buonomano DV (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 16(7):925

    Article  Google Scholar 

  • Lages M, Treisman M (2010) A criterion setting theory of discrimination learning that accounts for anisotropies and context effects. Seeing Perceiving 23(5):401–434

    Article  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113. https://doi.org/10.1126/science.1154735

    Article  Google Scholar 

  • Lakatos P, Schroeder CE, Leitman DI, Javitt DC (2013) Predictive suppression of cortical excitability and its deficit in schizophrenia. J Neurosci 33(28):11692–11702. https://doi.org/10.1523/JNEUROSCI.0010-13.2013

    Article  Google Scholar 

  • Lange J, Halacz J, van Dijk H, Kahlbrock N, Schnitzler A (2011) Fluctuations of prestimulus oscillatory power predict subjective perception of tactile simultaneity. Cereb Cortex 22(11):2564–2574

    Article  Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: how people track time-varying events. Psychol Rev 106(1):119

    Article  Google Scholar 

  • Lashley KS (1951) The problem of serial order in behavior, vol 21. Bobbs-Merrill

    Google Scholar 

  • Legg CF (1968) Alpha rhythm and time judgments. J Exp Psychol 78(1):46

    Article  Google Scholar 

  • Leow LA, Grahn JA (2014) Neural mechanisms of rhythm perception: present findings and future directions. In: Neurobiology of interval timing. Springer, New York, pp 325–338

    Google Scholar 

  • Leow LA, Rinchon C, Grahn J (2015) Familiarity with music increases walking speed in rhythmic auditory cuing. Ann N Y Acad Sci 1337(1):53–61

    Article  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13(2):250–255

    Article  Google Scholar 

  • Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1897–1905

    Article  Google Scholar 

  • Loveless NE (1986) Potentials evoked by temporal deviance. Biol Psychol 22(2):149–167

    Article  Google Scholar 

  • Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54(6):1001–1010

    Article  Google Scholar 

  • Lustig C, Meck WH (2011) Modality differences in timing and temporal memory throughout the lifespan. Brain Cogn 77(2):298–303

    Article  Google Scholar 

  • Macar F (1977) Meaning of contingent negative variations with the temporal dimension of behavior. Annee Psychol.

    Google Scholar 

  • Macar F, Vidal F, Casini L (1999) The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res 125(3):271–280

    Article  Google Scholar 

  • Mackay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181(4607):507

    Article  Google Scholar 

  • Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103

    Article  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21(2):139–170

    Article  Google Scholar 

  • Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus α phase predicts visual awareness. J Neurosci 29(9):2725–2732.

    Article  Google Scholar 

  • McDonald JJ, Teder-Sälejärvi WA, Di Russo F, Hillyard SA (2005) Neural basis of auditory-induced shifts in visual time-order perception. Nat Neurosci 8(9):1197

    Article  Google Scholar 

  • Meck WH (1983) Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process 9(2):171

    Google Scholar 

  • Meijer D, Te Woerd E, Praamstra P (2016) Timing of beta oscillatory synchronization and temporal prediction of upcoming stimuli. NeuroImage 138:233–241

    Article  Google Scholar 

  • Meili R, Tobler E (1931) Les mouvements stroboscopiques chez les enfants. W. Kundig, Genève

    Google Scholar 

  • Mento G, Tarantino V, Vallesi A, Bisiacchi PS (2015) Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study. J Cogn Neurosci 27(3):425–439

    Article  Google Scholar 

  • Mento G (2013) The passive CNV: carving out the contribution of task-related processes to expectancy. Front Hum Neurosci 7(December). https://doi.org/10.3389/fnhum.2013.00827

  • Mento G, Astle DE, Scerif G (2018) Cross-frequency phase-amplitude coupling as a mechanism for temporal orienting of attention in childhood. Journal of cognitive neuroscience 30(4):594–602

    Article  Google Scholar 

  • Mento G, Tarantino V, Sarlo M, Bisiacchi PS (2013) Automatic temporal expectancy: a high-density event-related potential study. PLoS One 8(5):e62896

    Article  Google Scholar 

  • Miall C (1989) The storage of time intervals using oscillating neurons. Neural Comput 1(3):359–371

    Article  Google Scholar 

  • Milton A, Pleydell-Pearce CW (2016) The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing. NeuroImage 133:53–61

    Article  Google Scholar 

  • Milton A, Pleydell-Pearce C (2017) Exploring the relationship of phase and peak-frequency EEG alpha-band and beta-band activity to temporal judgments of stimulus duration. Cogn Neurosci 8(4):193–205

    Article  Google Scholar 

  • Miniussi C, Wilding EL, Coull JT, Nobre AC (1999) Orienting attention in time. Modulation of brain potentials. Brain 122:1507–1518

    Article  Google Scholar 

  • Morillon B, Baillet S (2017) Motor origin of temporal predictions in auditory attention. Proc Natl Acad Sci 114(42):E8913–E8921

    Article  Google Scholar 

  • Morillon B, Schroeder CE, Wyart V (2014) Motor contributions to the temporal precision of auditory attention. Nat Commun 5(October). https://doi.org/10.1038/ncomms6255

  • Morrone MC, Ross J, Burr D (2005) Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8(7):950

    Article  Google Scholar 

  • N’Diaye K, Ragot R, Garnero L, Pouthas V (2004) What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG co-recordings. Cogn Brain Res 21(2):250–268

    Article  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Erlbaum, London

    Google Scholar 

  • Näätänen R (1995) The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear 16(1):6–18

    Article  Google Scholar 

  • Näätänen R, Paavilainen P, Reinikainen K (1989) Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neurosci Lett 107(1–3):347–352

    Article  Google Scholar 

  • Näätänen R, Syssoeva O, Takegata R (2004) Automatic time perception in the human brain for intervals ranging from milliseconds to seconds. Psychophysiology 41(4):660–663

    Article  Google Scholar 

  • Nelson TM, Bartley SH, Jordan JF (1963) Experimental evidence for the involvement of a neurophysiological mechanism in the discrimination of duration. J Psychol 55(2):371–385

    Article  Google Scholar 

  • New JJ, Scholl BJ (2009) Subjective time dilation: spatially local, object-based, or a global visual experience? J Vis 9(2):4–4

    Article  Google Scholar 

  • Ng KK, Tobin S, Penney TB (2011) Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front Integr Neurosci 5:77

    Google Scholar 

  • Ng KK, Penney TB (2014) Probing interval timing with scalp-recorded electroencephalography (EEG). In: Neurobiology of interval timing. Springer, New York, pp 187–207

    Chapter  Google Scholar 

  • Ng BSW, Schroeder T, Kayser C (2012) A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception. J Neurosci 32(35):12268–12276. https://doi.org/10.1523/JNEUROSCI.1877-12.2012

    Article  Google Scholar 

  • Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89(1):133

    Google Scholar 

  • Nijhawan R (1994) Motion extrapolation in catching. Nature 370:256–257

    Article  Google Scholar 

  • Nobre AC, van Ede F (2018) Anticipated moments: temporal structure in attention. Nat Rev Neurosci 19(1):34–48. https://doi.org/10.1038/nrn.2017.141

    Article  Google Scholar 

  • Nobre AC, Correa A, Coull JT (2007) The hazards of time. Curr Opin Neurobiol 17(4):465–470

    Article  Google Scholar 

  • Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31(28):10234–10240. https://doi.org/10.1523/JNEUROSCI.0411-11.2011

    Article  Google Scholar 

  • Nozaradan S, Peretz I, Mouraux A (2012) Steady-state evoked potentials as an index of multisensory temporal binding. Neuroimage 60(1):21–28

    Article  Google Scholar 

  • Nozaradan S, Peretz I, Keller PE (2016) Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci Rep 6:20612

    Google Scholar 

  • Obleser J, Henry MJ, Lakatos P (2017) What do we talk about when we talk about rhythm? PLoS Biol 15(9):e2002794. https://doi.org/10.1371/journal.pbio.2002794

    Article  Google Scholar 

  • Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90

    Article  Google Scholar 

  • Pariyadath V, Eagleman D (2007) The effect of predictability on subjective duration. PLoS One 2(11):e1264

    Article  Google Scholar 

  • Pariyadath V, Eagleman DM (2012) Subjective duration distortions mirror neural repetition suppression. PLoS One 7(12):e49362

    Article  Google Scholar 

  • Patel AD (2006) Musical rhythm, linguistic rhythm, and human evolution. Music Percept 24(1):99–104

    Article  Google Scholar 

  • Patel AD, Iversen JR (2014) The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front Syst Neurosci 8:57

    Google Scholar 

  • Patel AD, Iversen JR, Chen Y, Repp BH (2005) The influence of metricality and modality on synchronization with a beat. Exp Brain Res 163(2):226–238

    Article  Google Scholar 

  • Patel AD, Iversen JR, Bregman MR, Schulz I (2009) Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr Biol 19(10):827–830

    Article  Google Scholar 

  • Penney TB (2003) Modality differences in interval timing: attention, clock speed, and memory. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 209–233

    Google Scholar 

  • Petzschner FH, Glasauer S, Stephan KE (2015) A Bayesian perspective on magnitude estimation. Trends Cogn Sci 19(5):285–293

    Article  Google Scholar 

  • Picton TW, Woods DL, Baribeau-Braun J, Healey TM (1977) Evoked potential audiometry. J Otolaryngol 6(2):90–119

    Google Scholar 

  • Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Clin Neurophysiol 45(2):198–210

    Article  Google Scholar 

  • Poeppel D, Idsardi WJ, Van Wassenhove V (2008) Speech perception at the interface of neurobiology and linguistics. Philos Trans R Soc Lond Ser B Biol Sci 363(1493):1071–1086

    Article  Google Scholar 

  • Polti I, Martin B, van Wassenhove V (2018) The effect of attention and working memory on the estimation of elapsed time. Sci Rep 8, 1–11

    Google Scholar 

  • Pöppel E (1972) Oscillations as possible basis for time perception. In: The study of time. Springer, Berlin/Heidelberg, pp 219–241. https://doi.org/10.1007/978-3-642-65387-2_16

    Chapter  Google Scholar 

  • Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1(2):56–61

    Article  Google Scholar 

  • Pöppel E (2009) Pre-semantically defined temporal windows for cognitive processing. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1887–1896

    Article  Google Scholar 

  • Povel DJ, Essens P (1985) Perception of temporal patterns. Music Percept 2(4):411–440

    Article  Google Scholar 

  • Praamstra P, Kourtis D, Kwok HF, Oostenveld R (2006) Neurophysiology of implicit timing in serial choice reaction-time performance. J Neurosci 26(20):5448–5455. https://doi.org/10.1523/JNEUROSCI.0440-06.2006

    Article  Google Scholar 

  • Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol 52(3):273–286

    Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87. https://doi.org/10.1038/4580

    Article  Google Scholar 

  • Recasens M, Uhlhaas PJ (2017) Test–retest reliability of the magnetic mismatch negativity response to sound duration and omission deviants. NeuroImage 157:184–195

    Article  Google Scholar 

  • Regan D (1966) Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 20(3):238–248

    Article  Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992

    Article  Google Scholar 

  • Repp BH, Su YH (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452

    Article  Google Scholar 

  • Rimmele J, Jolsvai H, Sussman E (2010) Auditory target detection is affected by implicit temporal and spatial expectations. J Cogn Neurosci 23(5):1136–1147. https://doi.org/10.1162/jocn.2010.21437

    Article  Google Scholar 

  • Rockstroh B, Müller M, Wagner M, Cohen R, Elbert T (1993) “Probing” the nature of the CNV. Electroencephalogr Clin Neurophysiol 87(4):235–241

    Article  Google Scholar 

  • Rohenkohl G, Nobre AC (2011) α oscillations related to anticipatory attention follow temporal expectations. J Neurosci 31(40):14076–14084. https://doi.org/10.1523/JNEUROSCI.3387-11.2011

    Article  Google Scholar 

  • Rohenkohl G, Gould IC, Pessoa J, Nobre AC (2014) Combining spatial and temporal expectations to improve visual perception. J Vis 14(4):8. https://doi.org/10.1167/14.4.8

    Article  Google Scholar 

  • Rolke B, Hofmann P (2007) Temporal uncertainty degrades perceptual processing. Psychon Bull Rev 14(3):522–526

    Article  Google Scholar 

  • Rose D, Summers J (1995) Duration illusions in a train of visual stimuli. Perception 24(10):1177–1187

    Article  Google Scholar 

  • Roseboom W, Arnold DH (2011) Twice upon a time: multiple concurrent temporal recalibrations of audiovisual speech. Psychol Sci 22(7):872–877

    Article  Google Scholar 

  • Ross DA (1968) Time perception and brain rhythms. Theses and dissertations. 2920. https://preserve.lehigh.edu/etd/2920

  • Samaha J, Postle BR (2015) The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Curr Biol 25(22):2985–2990

    Article  Google Scholar 

  • Samaha J, Bauer P, Cimaroli S, Postle BR (2015) Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction. Proc Natl Acad Sci 112(27):8439–8444. https://doi.org/10.1073/pnas.1503686112

    Article  Google Scholar 

  • Schlauch RS, Ries DT, DiGiovanni JJ (2001) Duration discrimination and subjective duration for ramped and damped sounds. J Acoust Soc Am 109(6):2880–2887

    Article  Google Scholar 

  • Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18. https://doi.org/10.1016/j.tins.2008.09.012

    Article  Google Scholar 

  • Schwartze M, Farrugia N, Kotz SA (2013) Dissociation of formal and temporal predictability in early auditory evoked potentials. Neuropsychologia 51(2):320–325

    Article  Google Scholar 

  • Simen P, Balci F, Cohen JD, Holmes P (2011) A model of interval timing by neural integration. J Neurosci 31(25):9238–9253

    Article  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65

    Article  MathSciNet  Google Scholar 

  • Snyder JS, Large EW (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn Brain Res 24(1):117–126

    Article  Google Scholar 

  • Solís-Vivanco R, Jensen O, Bonnefond M (2018) Top–down control of alpha phase adjustment in anticipation of temporally predictable visual stimuli. J Cogn Neurosci 30(8):1157–1169. https://doi.org/10.1162/jocn_a_01280

    Article  Google Scholar 

  • Spence C, Parise C (2010) Prior-entry: a review. Conscious Cogn 19(1):364–379

    Article  Google Scholar 

  • Stefanics G, Hangya B, Hernádi I, Winkler I, Lakatos P, Ulbert I (2010) Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J Neurosci 30(41):13578–13585

    Article  Google Scholar 

  • Strauß A, Wöstmann M, Obleser J (2014) Cortical alpha oscillations as a tool for auditory selective inhibition. Front Hum Neurosci 8:350. https://doi.org/10.3389/fnhum.2014.00350

    Article  Google Scholar 

  • Stroud JM (1956) The fine structure of psychological time. In: Quastler H (ed) Information theory in psychology: problems and methods. Free Press, New York, pp 174–207

    Google Scholar 

  • Surwillo WW (1966) Time perception and the ‘internal clock’: some observations on the role of the electroencephalogram. Brain Res 2(4):390–392

    Article  Google Scholar 

  • Tervaniemi M, Radil T, Radilova J, Kujala T, Näätänen R (1999) Pre-attentive discriminability of sound order as a function of tone duration and interstimulus interval: a mismatch negativity study. Audiol Neurotol 4(6):303–310

    Article  Google Scholar 

  • Takahashi T, Kitazawa S (2017) Modulation of illusory reversal in tactile temporal order by the phase of posterior alpha rhythm. J Neurosci 37(21):5298–5308. https://doi.org/10.1523/JNEUROSCI.2899-15.2017

    Article  Google Scholar 

  • Takahashi H, Nakao M, Kaga K (2004) Cortical mapping of auditory-evoked offset responses in rats. Neuroreport 15(10):1565–1569

    Article  Google Scholar 

  • Tamm M, Uusberg A, Allik J, Kreegipuu K (2014) Emotional modulation of attention affects time perception: evidence from event-related potentials. Acta Psychol 149:148–156

    Article  Google Scholar 

  • Tan H, Wade C, Brown P (2016) Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models. J Neurosci 36(5):1516–1528

    Article  Google Scholar 

  • Tarantino V, Ehlis AC, Baehne C, Boreatti-Huemmer A, Jacob C, Bisiacchi P, Fallgatter AJ (2010) The time course of temporal discrimination: an ERP study. Clin Neurophysiol 121(1):43–52

    Article  Google Scholar 

  • ten Oever S, van Atteveldt N, Sack AT (2015) Increased stimulus expectancy triggers low-frequency phase reset during restricted vigilance. J Cogn Neurosci 27(9):1811–1822. https://doi.org/10.1162/jocn_a_00820

    Article  Google Scholar 

  • Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2(2):149–162

    Article  Google Scholar 

  • Thut G, Schyns P, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:170

    Article  Google Scholar 

  • Titchener EB (1908) Lectures on the elementary psychology of feeling and attention. Macmillan, New York

    Book  Google Scholar 

  • Todorovic A, Schoffelen J-M, van Ede F, Maris E, de Lange FP (2015) Temporal expectation and attention jointly modulate auditory oscillatory activity in the beta band. PLoS One 10(3):e0120288. https://doi.org/10.1371/journal.pone.0120288

    Article  Google Scholar 

  • Treisman M (1963) Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr Gen Appl 77(13):1

    Article  Google Scholar 

  • Treisman M (1984) Temporal rhythms and cerebral rhythms. Ann N Y Acad Sci 423(1):542–565

    Article  Google Scholar 

  • Treisman M (2013) The information-processing model of timing (Treisman, 1963): its sources and further development. Timing Time Percept 1(2):131–158

    Article  Google Scholar 

  • Treisman M, Brogan D (1992) Time perception and the internal clock: effects of visual flicker on the temporal oscillator. Eur J Cogn Psychol 4(1):41–70

    Article  Google Scholar 

  • Trillenberg P, Verleger R, Wascher E, Wauschkuhn B, Wessel K (2000) CNV and temporal uncertainty with ‘ageing’ and ‘non-ageing’ S1–S2 intervals. Clin Neurophysiol 111(7):1216–1226

    Article  Google Scholar 

  • Tse PU, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Percept Psychophys 66(7):1171–1189

    Article  Google Scholar 

  • Tzagarakis C, Ince NF, Leuthold AC, Pellizzer G (2010) Beta-band activity during motor planning reflects response uncertainty. J Neurosci 30(34):11270–11277

    Article  Google Scholar 

  • Varela FJ, Toro A, John ER, Schwartz EL (1981) Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5):675–686

    Article  Google Scholar 

  • Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28(8):1816–1823

    Google Scholar 

  • van Driel J, Knapen T, van Es DM, Cohen MX (2014) Interregional alpha-band synchrony supports temporal cross-modal integration. NeuroImage 101:404–415

    Article  Google Scholar 

  • van Wassenhove V (2009) Minding time in an amodal representational space. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1815–1830

    Article  Google Scholar 

  • van Wassenhove V (2016) Temporal cognition and neural oscillations. Curr Opin Behav Sci 8:124–130

    Article  Google Scholar 

  • van Wassenhove V (2017) Defining moments for conscious time and content. PsyCh J 6(2):168–169

    Article  Google Scholar 

  • van Wassenhove V, Lecoutre L (2015) Duration estimation entails predicting when. NeuroImage 106:272–283

    Article  Google Scholar 

  • van Wassenhove V, Buonomano DV, Shimojo S, Shams L (2008) Distortions of subjective time perception within and across senses. PLoS One 3(1):e1437

    Article  Google Scholar 

  • van Wassenhove V, Wittmann M, Craig AD, Paulus MP (2011) Psychological and neural mechanisms of subjective time dilation. Frontiers in Neuroscience 5:56

    Google Scholar 

  • VanRullen R (2016) Perceptual cycles. Trends Cogn Sci 20(10):723–735

    Article  Google Scholar 

  • VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cogn Sci 7(5):207–213

    Article  Google Scholar 

  • Varela FJ (1999) The specious present: a neurophenomenology of time consciousness. In: Naturalizing phenomenology: issues in contemporary phenomenology and cognitive science, vol 64. Stanford University Press, Stanford, pp 266–329

    Google Scholar 

  • Vibell J, Klinge C, Zampini M, Spence C, Nobre AC (2007) Temporal order is coded temporally in the brain: early event-related potential latency shifts underlying prior entry in a cross-modal temporal order judgment task. J Cogn Neurosci 19(1):109–120

    Article  Google Scholar 

  • Vroomen J, Keetels M, De Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22(1):32–35

    Article  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268

    Article  Google Scholar 

  • Walter WG (1950) Normal rhythms – their development, distribution and significance. In: Hill D, Parr G (eds) Electroencephalography; a symposium on its various aspects. Macdonald, Oxford, UK, pp 203–227

    Google Scholar 

  • Walter WG (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 230:380-384

    Article  Google Scholar 

  • Wearden JH (2005) Origins and development of internal clock theories of time. Psychol Fr 50(1):7–25

    Google Scholar 

  • Weinberg H, Brickett PA, Vrba J, Fife AA, Burbank MB (1984) The use of a squid third order spatial gradiometer to measure magnetic fields of the brain. Ann N Y Acad Sci 425(1):743–752

    Article  Google Scholar 

  • Werboff J (1962) Time judgment as a function of electroencephalographic activity. Exp Neurol 6(2):152–160

    Article  Google Scholar 

  • White CT (1963) Temporal numerosity and the psychological unit of duration. Psychol Monogr Gen Appl 77(12):1

    Article  Google Scholar 

  • Wiener N (1961) Cybernetics or control and communication in the animal and the machine, vol 25. MIT Press, New York

    MATH  Google Scholar 

  • Wiener M, Thompson JC (2015) Repetition enhancement and memory effects for duration. Neuroimage 113:268–278

    Article  Google Scholar 

  • Wiener M, Parikh A, Krakow A, Coslett HB (2018) An intrinsic role of beta oscillations in memory for time estimation. Sci Rep 8(1):7992

    Article  Google Scholar 

  • Wilsch A, Henry MJ, Herrmann B, Maess B, Obleser J (2014) Alpha oscillatory dynamics index temporal expectation benefits in working memory. Cereb Cortex 25(7):1938–1946

    Article  Google Scholar 

  • Wilsch A, Henry MJ, Herrmann B, Maess B, Obleser J (2015a) Slow-delta phase concentration marks improved temporal expectations based on the passage of time. Psychophysiology 52(7):910–918

    Article  Google Scholar 

  • Wilsch A, Henry MJ, Herrmann B, Maess B, Obleser J (2015b) Alpha oscillatory dynamics index temporal expectation benefits in working memory. Cereb Cortex (New York: 1991) 25(7):1938–1946. https://doi.org/10.1093/cercor/bhu004

    Article  Google Scholar 

  • Wilsch A, Henry MJ, Herrmann B, Herrmann CS, Obleser J (2018) Temporal expectation modulates the cortical dynamics of short-term memory. J Neurosci 38:7428–7439. https://doi.org/10.1523/JNEUROSCI.2928-17.2018

    Article  Google Scholar 

  • Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 14(3):217

    Article  MathSciNet  Google Scholar 

  • Wittmann M, Van Wassenhove V, Craig B, Paulus MP (2010) The neural substrates of subjective time dilation. Front Hum Neurosci 4:2

    Google Scholar 

  • Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612

    Article  Google Scholar 

  • Woodrow H (1914) The measurement of attention. The psychological monographs, 17(5). Psychological Review Company, Princeton

    Google Scholar 

  • Wutz A, Melcher D (2014) The temporal window of individuation limits visual capacity. Front Psychol 5:952

    Article  Google Scholar 

  • Wutz A, Weisz N, Braun C, Melcher D (2014) Temporal windows in visual processing: “prestimulus brain state” and “poststimulus phase reset” segregate visual transients on different temporal scales. J Neurosci 34(4):1554–1565

    Article  Google Scholar 

  • Yabe H, Matsuoka T, Sato Y, Hiruma T, Sutoh T, Koyama S, Gunji A, Kakigi R, Kaneko S (2005) Time may be compressed in sound representation as replicated in sensory memory. Neuroreport 16(2):95–98

    Article  Google Scholar 

  • Yamashiro K, Inui K, Otsuru N, Kakigi R (2011) Change-related responses in the human auditory cortex: an MEG study. Psychophysiology 48(1):23–30

    Article  Google Scholar 

  • Zanto TP, Snyder JS, Large EW (2006) Neural correlates of rhythmic expectancy. Adv Cogn Psychol 2(2–3):221–231

    Article  Google Scholar 

  • Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory–motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie van Wassenhove .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van Wassenhove, V., Herbst, S., Kononowicz, T.W. (2019). Timing the Brain to Time the Mind: Critical Contributions of Time-Resolved Neuroimaging for Temporal Cognition. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics