Skip to main content

MEG Studies on Music

  • Living reference work entry
  • First Online:
  • 164 Accesses

Abstract

In this chapter we describe and discuss studies that have used musical stimuli or musically trained subjects in order to investigate different aspects of sensory processing and cognition, including auditory and sensorimotor function and multisensory integration. We also include studies that have used music and musical training to study human neuronal plasticity and clinical applications in conditions such as tinnitus. We highlight the methodological advantages of MEG that are specific for research on auditory processing and for detecting changes through training.

This is a preview of subscription content, log in via an institution.

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9(5):387–399

    Article  Google Scholar 

  • Boh B, Herholz SC, Lappe C, Pantev C (2011) Processing of complex auditory patterns in musicians and nonmusicians. PLoS One 6(7):e21458

    Article  Google Scholar 

  • Brattico E, Pallesen KJ, Varyagina O, Bailey C, Anourova I, Jarvenpaa M, Eerola T, Tervaniemi M (2009) Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study. J Cogn Neurosci 21(11):2230–2244

    Article  Google Scholar 

  • Eggermont JJ (2007) Pathophysiology of tinnitus. Prog Brain Res 166:19–35

    Article  Google Scholar 

  • Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic encoding of melodic contour and interval structure. J Cogn Neurosci 16(6):1010–1021

    Article  Google Scholar 

  • Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802

    Article  Google Scholar 

  • Gunji A, Ishii R, Chau W, Kakigi R, Pantev C (2007) Rhythmic brain activities related to singing in humans. NeuroImage 34(1):426–434

    Article  Google Scholar 

  • Hashimoto T, Hirata Y, Kuriki S (2000) Auditory cortex responds in 100 ms to incongruity of melody. Neuroreport 11(12):2799–2801

    Article  Google Scholar 

  • Haueisen J, Knösche TR (2001) Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci 13(6):786–792

    Article  Google Scholar 

  • Herholz SC, Lappe C, Knief A, Pantev C (2008) Neural basis of music imagery and the effect of musical expertise. Eur J Neurosci 28(11):2352–2360

    Article  Google Scholar 

  • Herholz SC, Lappe C, Pantev C (2009) Looking for a pattern: an MEG study on the abstract mismatch negativity in musicians and nonmusicians. BMC Neurosci 10(1):42

    Article  Google Scholar 

  • Herholz SC, Boh B, Pantev C (2011) Musical training modulates encoding of higher-order regularities in the auditory cortex. Eur J Neurosci 34(3):524–529

    Article  Google Scholar 

  • Krause V, Schnitzler A, Pollok B (2010) Functional network interactions during sensorimotor synchronization in musicians and non-musicians. NeuroImage 52(1):245–251

    Article  Google Scholar 

  • Kuchenbuch A, Paraskevopoulos E, Herholz SC, Pantev C (2012) Electromagnetic correlates of musical expertise in processing of tone patterns. PLoS One 7(1):e30171

    Article  Google Scholar 

  • Kujala T, Tervaniemi M, Schröger E (2007) The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol 74(1):1–19

    Article  Google Scholar 

  • Lappe C, Herholz SC, Trainor LJ, Pantev C (2008) Cortical plasticity induced by short-term unimodal and multimodal musical training. J Neurosci 28(39):9632–9639

    Article  Google Scholar 

  • Lappe C, Trainor LJ, Herholz SC, Pantev C (2011) Cortical plasticity induced by short-term multimodal musical rhythm training. PLoS One 6(6):e21493

    Article  Google Scholar 

  • Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in Broca’s area: an MEG study. Nat Neurosci 4(5):540–545

    Article  Google Scholar 

  • Näätänen R, Alho K (1995) Mismatch negativity–a unique measure of sensory processing in audition. Int J Neurosci 80(1–4):317–337

    Article  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590

    Article  Google Scholar 

  • Okamoto H, Stracke H, Stoll W, Pantev C (2010) Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci U S A 107(3):1207–1210

    Article  Google Scholar 

  • Pantev C, Herholz SC (2011) Plasticity of the human auditory cortex related to musical training. Neurosci Biobehav Rev 35(10):2140–2154

    Article  Google Scholar 

  • Pantev C, Wollbrink A, Roberts LE, Engelien A, Lütkenhöner B (1999) Short-term plasticity of the human auditory cortex. Brain Res 842(1):192–199

    Article  Google Scholar 

  • Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012a) Evidence for training-induced plasticity in multisensory brain structures: an MEG study. PLoS One 7(5):e36534

    Article  Google Scholar 

  • Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012b) Musical expertise induces audio-visual integration of abstract congruency rules. J Neurosci 32(50):18196–18203

    Article  Google Scholar 

  • Paraskevopoulos E, Kuchenbuch A, Herholz SC, Pantev C (2012c) Musical training effects on statistical learning of melodies: an MEG study. Neuropsychologia 50(2):341–349

    Article  Google Scholar 

  • Ragert P, Schmidt A, Altenmuller E, Dinse HR (2004) Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci 19(2):473–478

    Article  Google Scholar 

  • Rosenkranz K, Williamon A, Rothwell JC (2007) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 27(19):5200–5206

    Article  Google Scholar 

  • Schulz M, Ross B, Pantev C (2003) Evidence for training-induced crossmodal reorganization of cortical functions in trumpet players. Neuroreport 14(1):157–161

    Article  Google Scholar 

  • Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Naatanen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. NeuroImage 9(3):330–336

    Article  Google Scholar 

  • Vuust P, Pallesen KJ, Bailey C, van Zuijen TL, Gjedde A, Roepstorff A, Ostergaard L (2005) To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage 24(2):560–564

    Article  Google Scholar 

  • Wan CY, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16(5):566–577

    Article  Google Scholar 

  • Yasui T, Kaga K, Sakai KL (2009) Language and music: differential hemispheric dominance in detecting unexpected errors in the lyrics and melody of memorized songs. Hum Brain Mapp 30(2):588–601

    Article  Google Scholar 

  • Zatorre RJ (2005) Music, the food of neuroscience? Nature 434(7031):312–315

    Article  Google Scholar 

  • Zatorre RJ, Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47(1):9–12

    Article  Google Scholar 

  • Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christo Pantev .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Herholz, S.C., Pantev, C. (2019). MEG Studies on Music. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics