Skip to main content

Microbial Communities in Hydrocarbon-Contaminated Desert Soils

  • Living reference work entry
  • First Online:
  • 193 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Desert ecosystems are vulnerable to heavy crude oil spills during oil exploration and extraction processes. Oil-contaminated deserts exhibit harsh environmental conditions such as extreme temperatures, lack of water, nutrient deficiency, and the persistence of high concentrations of hydrocarbon compounds in soils. Over the past three decades, more attention has been directed to the study of oil-degrading microbial communities in oil-polluted desert ecosystems. In this chapter, current knowledge on hydrocarbon-degrading microbial communities in desert soils and their responses to bioremediation treatments as assessed using culture-based and molecular approaches has been reviewed. Diverse groups of bacteria and fungi have been detected in oil-polluted desert soils despite the severe environmental conditions. Bioremediation approaches including landfarming, phytoremediation, and the use of nutrients and vitamin mixtures have proven to be successful in the cleanup of oil-polluted desert soils. However, bioaugmentation approaches have not succeeded in most cases due to the inability of exogenous microorganisms to compete with indigenous microorganisms in desert soils. Further investigations are required to scale up bioremediation treatments and test their applicability in field conditions. More research should also be focused on the use of genomic and proteomic approaches to study the functional diversity and activities of microorganisms in oil-polluted desert soils.

This is a preview of subscription content, log in via an institution.

References

  • Abed RMM, Al Sabahi J, Al Maqrashi F, Al Habsi A, Al Hinai M (2014) Characterization of hydrocarbon degrading bacteria isolated from oil contaminated sediment in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. Int Biodeterior Biodegrad 89:58–66

    Article  CAS  Google Scholar 

  • Abed RMM, Al-Kindi S, Al-Kharusi S (2015a) Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol 69:95–105

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Al-Kharusi S, Al-Hinai M (2015b) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodeterior Biodegrad 98:43–52

    Article  CAS  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  PubMed  Google Scholar 

  • Akbari A, Ghoshal S (2015) Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site. Environ Microbiol 17:4916–4928

    Article  CAS  PubMed  Google Scholar 

  • Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan S (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Dashti N, Al-Mailem D, Eliyas M, Radwan S (2012) Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ Sci Pollut Res 19:812–820

    Article  CAS  Google Scholar 

  • Ali N, Dashti N, Salamah S, Sorkhoh N, Al-Awadhi H, Radwan S (2016a) Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats. Microb Biotechnol 9:157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali N, Dashti N, Salamah S, Al-Awadhi H, Sorkhoh N, Radwan S (2016b) Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil. Environ Sci Pollut Res 23:8686–8698

    Article  CAS  Google Scholar 

  • Al-Kharusi S, Abed RMM, Dobretsov S (2016a) Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones. Int Biodeterior Biodegrad 107:165–173

    Article  CAS  Google Scholar 

  • Al-Kharusi S, Abed RMM, Dobretsov S (2016b) EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils. Chemosphere 147:279–286

    Article  CAS  PubMed  Google Scholar 

  • Al-Kindi S, Abed RMM (2016a) Comparing oil degradation efficiency and bacterial communities in contaminated soils subjected to biostimulation using different organic wastes. Water Air Soil Pollut 227:36

    Article  CAS  Google Scholar 

  • Al-Kindi S, Abed RMM (2016b) Effect of biostimulation using sewage sludge, soybean meal, and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil. Front Microbiol 7:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Mahruki A, Al Mueini R, Al-Mahrooqi Y, Al-Sabahi A, Roos GHP, Patzelt H (2006) Significantly enhanced landfarming performance through the use of saline water and weekly tilling. In: Proceedings of the SPE international conference on health and safety, and environment in oil and gas exploration and production, Abu Dhabi, SPE-98568-PP

    Google Scholar 

  • Al-Mailem DM, Kansour MK, Radwan SS (2015) Moderately thermophilic, hydrocarbonoclastic bacterial communities in Kuwaiti desert soil: enhanced activity via Ca2+ and dipicolinic acid amendment. Extremophiles 19:573–583

    Article  CAS  PubMed  Google Scholar 

  • Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7

    Article  CAS  Google Scholar 

  • Álvarez LM, Ruberto LA, Balbo AL, Mac Cormack WP (2017) Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590:194–203

    Article  CAS  Google Scholar 

  • Balba MT, Al-Daher R, Al-Awadhi N, Chino T, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173

    Article  CAS  Google Scholar 

  • Barabás G, Sorkhoh NA, Fardoon F, Radwan SS (1995) n-Alkane-utilization by oligocarbophilic actinomycete strains from oil-polluted Kuwaiti desert soil. Actinomycetologica 9:13–18

    Article  Google Scholar 

  • Barabás G, Penyige A, Szabo I, Vargha G, Damjanovich S, Matko J, Szollosi J, Radwan SS, Matyus A, Hirano T (2000) Hydrocarbon uptake and utilization by Streptomyces strains. In: Wise DL, Trantolo DJ (eds) Remediation of hazardous wastes contaminated soils, 2nd edn. Marcel Dekker, New York, pp 291–309

    Google Scholar 

  • Barabás G, Vargha G, Szabó IM, Penyige A, Damjanovich S, Szöllösi J, Matkó J, Hirano T, Mátyus A, Szabó I (2001) n-Alkane uptake and utilisation by Streptomyces strains. Anton Leeuw 79:269–276

    Article  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho BN, Chino H, Tsuji H, Kunito T, Nagaoka K, Otsuka S, Yamashita K, Matsumoto S, Oyaizu H (1997a) Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials. Chemosphere 35:1599–1611

    Article  CAS  PubMed  Google Scholar 

  • Cho BN, Chino H, Tsuji H, Kunito T, Makishima H, Uchida H, Matsumoto S, Oyaizu H (1997b) Analysis of oil components and hydrocarbon-utilizing microorganisms during laboratory-scale bioremediation of oil-contaminated soil of Kuwait. Chemosphere 35:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Dashti N, Al-Awadhi H, Khanafer M, Abdelghany S, Radwan S (2008) Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy. Chemosphere 70:475–479

    Article  CAS  PubMed  Google Scholar 

  • Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Ali N, Radwan S (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Dashti N, Ali N, Eliyas M, Khanafer M, Sorkhoh NA, Radwan SS (2015) Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants. Microbes Environ 30:70–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004a) Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microb Ecol 47:407–415

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004b) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70

    Article  Google Scholar 

  • Dias RL, Ruberto L, Hernández E, Vázquez SC, Balbo AL, Del Panno MT, Mac Cormack WP (2012) Bioremediation of an aged diesel oil-contaminated Antarctic soil: evaluation of the “on site” biostimulation strategy using different nutrient sources. Int Biodeterior Biodegrad 75: 96–103

    Article  CAS  Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68:5181–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Nawawy AS, Al-Daher R, Yateem A (1999) Plant–soil interaction during bioremediation of oil contaminated soil. In: Kostecki P, Behbehani M (eds) Assessment and remediation of oil contaminated soils. New Age International, Kuwait, pp 218–224

    Google Scholar 

  • Embar K, Forgacs C, Sivan A (2006) The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil. Biodegradation 17:369–377

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27

    Article  CAS  PubMed  Google Scholar 

  • Farrell RL, Rhodes PL, Aislabie J (2003) Toluene-degrading Antarctic Pseudomonas strains from fuel-contaminated soil. Biochem Biophys Res Commun 312:235–240

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms. In: Smith I, Slepecky RA, Setlow P (eds) Regulation of prokaryotic development. American Society for Microbiology, Washington, DC, pp 43–63

    Google Scholar 

  • Godoy-Faúndez A, Antizar-Ladislao B, Reyes-Bozo L, Camaño A, Sáez-Navarrete C (2008) Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile). J Hazard Mater 151:649–657

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15:147–172

    Article  Google Scholar 

  • Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548

    Article  CAS  PubMed  Google Scholar 

  • Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70:1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soil subjected to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Cormack WP, Fraile ER (1997) Characterization of a hydrocarbon degrading psychrotrophic Antarctic bacterium. Antarct Sci 9:150–155

    Google Scholar 

  • Mahmoud HM, Suleman P, Sorkhoh NA, Salamah S, Radwan SS (2010) The potential of established turf cover for cleaning oily desert soil using rhizosphere technology. Int J Phytorem 13:156–167

    Article  CAS  Google Scholar 

  • Makut MD, Ishaya P (2010) Bacterial species associated with soils contaminated with used petroleum products in Keffi town, Nigeria. Afr J Microbiol Res 4:1698–1702

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from Arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 64:4823–4829

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinnon M, Vine P (1991) Tides of war. IMMEL, London

    Google Scholar 

  • Mohamed ME, Al-Dousary M, Hamzah RY, Fuchs G (2006) Isolation and characterization of indigenous thermophilic bacteria active in natural attenuation of bio-hazardous petrochemical pollutants. Int Biodeterior Biodegrad 58:213–223

    Article  CAS  Google Scholar 

  • Noble IR, Gitay H (1996) Deserts in a changing climate: impacts. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate change: impact, adaptation and migration of climate change: scientific–technical analysis. Cambridge University Press, New York, pp 159–165

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegrad 63:273–279

    Article  CAS  Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30-3 isolated from oil-contaminated soil, Antarctica. Polar Biol 25:5–11

    Article  Google Scholar 

  • Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae, an Antarctic strain. World J Microbiol Biotechnol 13:137–139

    Article  CAS  Google Scholar 

  • Radwan SS (1990) Gulf oil spill. Nature 350:456

    Article  Google Scholar 

  • Radwan S (1998) Hydrocarbon uptake by Streptomyces. FEMS Microbiol Lett 169:87–94

    Article  CAS  PubMed  Google Scholar 

  • Radwan S (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf region. In: Patrice D, Chandra SN (eds) Microbiology of extreme soils, 13th edn. Springer, Berlin/Heidelberg, pp 275–298

    Chapter  Google Scholar 

  • Radwan S (2009) Phytoremediation for oily desert soils. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Berlin/Heidelberg, pp 279–298

    Chapter  Google Scholar 

  • Radwan SS, Al-Muteirie AS (2001) Vitamin requirements of hydrocarbon-utilizing soil bacteria. Microbiol Res 155:301–307

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS, Sorkhoh NA (1997) A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. J Appl Microbiol 83:353–358

    Article  Google Scholar 

  • Radwan SS, Sorkhoh NA, Al-Hasan RH (1995a) Self-cleaning and bioremediation potential of the Arabian Gulf. In: Cheremisinoff P (ed) Encyclopedia of environmental control technology, vol 9. Gulf, Houston, pp 901–924

    Google Scholar 

  • Radwan S, Sorkhoh N, Israa EN (1995b) Oil biodegradation around roots. Nature 376:302–302

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS, Sorkhoh NA, Fardoun F, Al-Hasan RH (1995c) Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44:265–270

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS, Al-Awadhi H, El-Nemr IM (2000) Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food. Int J Phytorem 2:383–396

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Mailem DM, Kansour MK (2017) Calcium (II) – and dipicolinic acid mediated-biostimulation of oil-bioremediation under multiple stresses by heat, oil and heavy metals. Sci Rep 7:9534

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Bozo L, Antizar-Lalislao B, Sáez-Navarrete C, Godoy-Faúndeza A (2010) Bioremediation of TOCs present in fuel-contaminated desert mining soil and sawdust in the Atacama region (Chile). In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 13, article 4. http://scholarworks.umass.edu/soilsproceedings/vol13/iss1/4

  • Ruberto LA, Vazquez S, Lobalbo A, Mac Cormack WP (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17:47–56

    Article  Google Scholar 

  • Saadoun I, Mohammad MJ, Hameed KM, Shawaqfah MA (2008) Microbial populations of crude oil spill polluted soils at the Jordan–Iraq desert (the Badia region). Braz J Microbiol 39:453–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173

    Article  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  • Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P (2006) Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J Bacteriol 188:3740–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol 39:123–126

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Microbiol 78:194–199

    CAS  Google Scholar 

  • Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Al-Awadhi H, Eliyas M, Radwan SS (2010a) Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int Biodeterior Biodegrad 64:226–231

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Ali N, Salamah S, Eliyas M, Khanafer M, Radwan SS (2010b) Enrichment of rhizospheres of crop plants raised in oily sand with hydrocarbon-utilizing bacteria capable of hydrocarbon consumption in nitrogen free media. Int Biodeterior Biodegrad 64:659–664

    Article  CAS  Google Scholar 

  • Subhash Y, Yoon DE, Lee SS (2017) Skermanella mucosa sp. nov., isolated from crude oil contaminated soil. Anton Leeuw 13:1–8

    Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Al-Soud WA, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomassin-Lacroix EJ, Yu Z, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Thomassin-Lacroix E, Eriksson M, Reimer K, Mohn W (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556

    Article  CAS  PubMed  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Patrice D, Chandra SN (eds) Microbiology of extreme soils, 13th edn. Springer, Berlin/Heidelberg, pp 15–43

    Chapter  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Smits THM, Labbè D, Witholt B, Greer CW, Van Beilen JB (2002a) Gene cloning and characterization of multiple alkane hydroxilase systems in Rhodococcus strains Q15 and NRRL B16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Schultz A, Van Beilen JB, Luz AP, Pellizari V, Labbè D, Greer CW (2002b) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  PubMed  Google Scholar 

  • Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China–Russia crude oil pipeline route. PLoS One 9:e96552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yateem A (2013) Rhizoremediation of oil-contaminated sites: a perspective on the Gulf War environmental catastrophe on the State of Kuwait. Environ Sci Pollut Res 20:100–107

    Article  CAS  Google Scholar 

  • Yateem A, Balba MT, El-Nawawy AS, Al-Awadhi N (2000) Plants-associated microflora and the remediation of oil-contaminated soil. Int J Phytorem 2:183–191

    Article  CAS  Google Scholar 

  • Yateem A, Balba MT, Al-Shayji Y, Al-Awadhi N (2002) Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil Sediment Contam 11:41–55

    Article  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Stewart GR, Mohn WW (2000) Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 66:5148–5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raeid M. M. Abed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Muthukrishnan, T., Abed, R.M.M. (2019). Microbial Communities in Hydrocarbon-Contaminated Desert Soils. In: McGenity, T. (eds) Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology . Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60063-5_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60063-5_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60063-5

  • Online ISBN: 978-3-319-60063-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics