Skip to main content

Microplane Models for Elasticity and Inelasticity of Engineering Materials

  • Reference work entry
  • First Online:

Abstract

In the traditional approach to the modeling of mechanical behavior of engineering materials, the stress tensor is calculated directly from the prescribed strain tensor either by a closed form tensorial relation as in elasticity or by incremental analysis as in classical plasticity formulations in which the formulation is developed in terms of tensor invariants and their combinations. However, to model the general three-dimensional constitutive behavior of the so-called geomaterials at arbitrary nonproportional load paths that frequently arise in dynamic loadings, such direct approaches do not yield models with desired accuracy. Instead, microplane approach prescribes the constitutive behavior on planes of various orientations of the material microstructure independently, and the second-order stress tensor is obtained by imposing the equilibrium of second-order stress tensor with the microplane stress vectors. In this work, particular attention is devoted to the milestone microplane models for plain concrete, namely, the model M4 and the model M7. Furthermore, a novel autocalibrating version of the model M7 called the model M7Auto is presented as an alternative to both differential and integral type nonlocal formulations since the model M7Auto does not suffer from the shortcomings of these classical nonlocal approaches. Examples of the performance of the models M7 and M7Auto are shown by simulating well-known benchmark test data like three-point bending size effect test data of plain concrete beams using finite element meshes of the same element size and Nooru-Mohamed test data obtained at different load paths using finite element meshes having different element sizes, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Z. Bažant, M. Adley, I. Carol, M. Jirasek, S. Akers, B. Rohani, J. Cargile, F. Caner, Large-strain generalization of microplane model for concrete and application. J. Eng. Mech. ASCE 126(9), 971–980 (2000)

    Article  Google Scholar 

  • Z. Bažant, F. Caner, Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. II: computation. J. Eng. Mech. ASCE 131(1), 41–47 (2005)

    Google Scholar 

  • Z. Bažant, F. Caner, M. Adley, S. Akers, Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. ASCE 126(9), 962–970 (2000)

    Article  Google Scholar 

  • Z. Bažant, F. Caner, I. Carol, M. Adley, S. Akers, Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. ASCE 126(9), 944–953 (2000)

    Google Scholar 

  • Z. Bažant, G. Di Luzio, Nonlocal microplane model with strain-softening yield limits. Int. J. Solids Struct. 41(24–25), 7209–7240 (2004)

    Article  Google Scholar 

  • Z. Bažant, P. Gambarova, Crack shear in concrete – crack band microplane model. J. Eng. Mech. ASCE 110(9), 2015–2035 (1984)

    Google Scholar 

  • Z. Bažant, J.-L. Le, C. Hoover, Nonlocal boundary layer (NBL) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials, in Proceedings of FraMCoS-7, 2010, pp. 135–143

    Google Scholar 

  • Z. Bažant, B. Oh, Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. ASCE 111(4), 559–582 (1985)

    Article  Google Scholar 

  • Z. Bažant, J. Ožbolt, Nonlocal microplane model for fracture, damage, and size effect in structures. J. Eng. Mech. ASCE 116(11), 2485–2505 (1990)

    Article  Google Scholar 

  • Z. Bažant, J. Ožbolt, Compression failure of quasibrittle material – nonlocal microplane model. J. Eng. Mech. ASCE 118(3), 540–556 (1992)

    Article  Google Scholar 

  • Z. Bažant, G. Pijaudiercabot, Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech. Trans. ASME 55(2), 287–293 (1988)

    Article  Google Scholar 

  • Z. Bažant, P. Prat, Microplane model for brittle-plastic material. 1. Theory. J. Eng. Mech. ASCE 114(10), 1672–1687 (1988a)

    Article  Google Scholar 

  • Z. Bažant, P. Prat, Microplane model for brittle-plastic material. 2. Verification. J. Eng. Mech. ASCE 114(10), 1689–1702 (1988b)

    Google Scholar 

  • Z. Bažant, Y. Xiang, M. Adley, P. Prat, S. Akers, Microplane model for concrete. 2. Data delocalization and verification. J. Eng. Mech. ASCE 122(3), 255–262 (1996a)

    Google Scholar 

  • Z. Bažant, Y. Xiang, P. Prat, Microplane model for concrete. 1. Stress-strain boundaries and finite strain. J. Eng. Mech. ASCE 122(3), 245–254 (1996b)

    Article  Google Scholar 

  • Z. Bažant, G. Zi, Microplane constitutive model for porous isotropic rocks. Int. J Numer Anal. methods Geomech. 27(1), 25–47 (2003)

    Article  Google Scholar 

  • M. Brocca, Z. Bažant, Microplane constitutive model and metal plasticity. Appl. Mech. Rev. ASME 53(10), 265–281 (2000)

    Article  Google Scholar 

  • M. Brocca, Z. Bažant, I. Daniel, Microplane model for stiff foams and finite element analysis of sandwich failure by core indentation. Int. J. Solids Struct. 38(44-45), 8111–8132 (2001)

    Article  Google Scholar 

  • M. Brocca, L. Brinson, Z. Bažant, Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. solids 50(5), 1051–1077 (2002)

    Article  Google Scholar 

  • F. Caner, Z. Bažant, Microplane model M4 for concrete. II: algorithm and calibration. J. Eng. Mech. ASCE 126(9), 954–961 (2000)

    Google Scholar 

  • F. Caner, Z. Bažant, J. Cervenka, Vertex effect in strain-softening concrete at rotating principal axes. J. Eng. Mech. ASCE 128(1), 24–33 (2002)

    Article  Google Scholar 

  • F.C. Caner, Z.P. Bažant, Microplane model M7 for plain concrete. I: formulation. J. Eng. Mech. 139(12), 1714–1723 (2013a)

    Google Scholar 

  • F.C. Caner, Z.P. Bažant, Microplane model M7 for plain concrete. II: calibration and verification. J. Eng. Mech. 139(12), 1724–1735 (2013b)

    Google Scholar 

  • F.C. Caner, Z.P. Bažant, C.G. Hoover, A.M. Waas, K.W. Shahwan, Microplane model for fracturing damage of triaxially braided fiber-polymer composites. J. Eng. Mater. Tech. Trans. ASME 133(2) 021024-1–021024-12 (2011)

    Article  Google Scholar 

  • F.C. Caner, Z. Guo, B. Moran, Z.P. Bažant, I. Carol, Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. J. Biomech. Eng. Trans. ASME 129(5), 632–641 (2007)

    Article  Google Scholar 

  • J. Červenka, Z. Bažant, M. Wierer, Equivalent localization element for crack band approach to mesh-sensitivity in microplane model. Int. J. Numer. Methods Eng. 62(5), 700–726 (2005)

    Article  Google Scholar 

  • K.-T. Chang, S. Sture, Microplane modeling of sand behavior under non-proportional loading. Comput. Geotech. 33(3), 177–187 (2006)

    Article  Google Scholar 

  • X. Chen, Z.P. Bažant, Microplane damage model for jointed rock masses. Int. J. Numer. Anal. Methods Geomech. 38(14), 1431–1452 (2014)

    Article  Google Scholar 

  • G. Cusatis, A. Beghini, Z.P. Bažant, Spectral stiffness microplane model for quasibrittle composite larninates – part I: theory. J. Appl. Mech. Trans. ASME 75(2) 021009-1–021009-9 (2008)

    Article  Google Scholar 

  • G.Cusatis, A. Mencarelli, D. Pelessone, J. Baylot, Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cem. Concr. Compos. 33(9), 891–905 (2011)

    Google Scholar 

  • G. di Luzio, A symmetric over-nonlocal microplane model {M4} for fracture in concrete. Int. J. Solids Struct. 44(13), 4418–4441 (2007)

    Article  Google Scholar 

  • G. Di Luzio, Z. Bažant, Spectral analysis of localization in nonlocal and over-nonlocal materials with softening plasticity or damage. Int. J. Solids Struct. 42(23), 6071–6100 (2005)

    Article  Google Scholar 

  • C.G. Hoover, Z.P. Bazant, J. Vorel, R. Wendner, M.H. Hubler, Comprehensive concrete fracture tests: description and results. Eng. Fract. Mech. 114, 92–103 (2013)

    Article  Google Scholar 

  • K. Kirane, Z. Bažant, Microplane damage model for fatigue of quasibrittle materials: sub-critical crack growth, lifetime and residual strength. Int. J. Fatigue 70, 93–105 (2015)

    Article  Google Scholar 

  • K. Kirane, M. Salviato, Z.P. Bažant, Microplane-triad model for elastic and fracturing behavior of woven composites. J. Appl. Mech. Trans. ASME83(4) 041006-1–041006-14 (2016)

    Article  Google Scholar 

  • M.B. Nooru-Mohamed, Mixed-mode fracture of concrete: an experimental approach. Ph.D. thesis, Civil Engineering and Geosciences, Universiteitsdrukkerij, Delft University of Technology, Delft, The Netherlands. (1992, 5)

    Google Scholar 

  • J. Ožbolt, Z. Bažant, Microplane model for cyclic triaxial behavior of concrete. J. Eng. Mech. ASCE 118(7), 1365–1386 (1992)

    Article  Google Scholar 

  • P. Prat, Z. Bažant, Microplane model for triaxial deformation of saturated cohesive soils. J. Geotech. Eng. ASCE 117(6), 891–912 (1991)

    Article  Google Scholar 

  • Simulia Corporation, Abaqus User Subroutines Reference Guide. Dassault Systèmes (2014)

    Google Scholar 

  • R. Wendner, J. Vorel, J. Smith, C.G. Hoover, Z.P. Bazant, G. Cusatis, Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models. Mater. Struct. 48(11), 3603–3626 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhun C. Caner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caner, F.C., de Carlos Blasco, V., Egido, M.G. (2019). Microplane Models for Elasticity and Inelasticity of Engineering Materials. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_1

Download citation

Publish with us

Policies and ethics