Skip to main content

Environmental Impact of Platinum, Palladium, and Rhodium Emissions from Autocatalytic Converters – A Brief Review of the Latest Developments

Abstract

For more than 40 years now, autocatalyts have been in use to reduce the release of toxic substances such as CO, unburnt hydrocarbons, and NOx generated by car engines. Although they have been helping in making the vehicular emissions cleaner, several studies have revealed that these catalysts are contributing significant concentrations of Pt, Pd, and Rh (the main active components of autocatalyts) to the urban environment. This has raised ecological and human health concerns, as the accumulation of Pt, Pd, and Rh in biota has been demonstrated in both laboratory and field studies. This article presents a review on these recent developments and looks ahead to the future. The major points discussed are (i) dispersion of Pt, Pd, and Rh; (ii) bioavailability and uptake of Pt, Pd, and Rh by biota; (iii) harmful effects of these metals on humans; (iv) studies on alternate cheaper and less harmful metals as catalysts in autocatalytic converters; and (v) recent developments in analytical techniques for the detection and determination of Pt, Pd, and Rh. These metals may pose a greater health risk than once thought for several reasons, but there are possible solutions such as PGE-free autocatalytic converters and electric, fuel cell, and solar-powered vehicles to solve this problem in near future.

Keywords

  • Autocatalytic converters
  • Platinum
  • Palladium
  • Rhodium
  • Pollution
  • Bioavailability
  • Health
  • Soils
  • E-waste
  • ICP-MS
  • HR-ICP-MS
  • INAA
  • XRF
  • Biosensors

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abdou M (2018) Platinum biogeochemical cycles in coastal environments. Ecotoxicology PhD thesis, University of Bordeaux, p 292

    Google Scholar 

  • Abhijith KV, Kumar P (2019) Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos Environ 201:132–147. https://doi.org/10.1016/j.atmosenv.2018.12.036

    CrossRef  CAS  Google Scholar 

  • Adam V, Hanustiak P, Krizkova S, Beklova M, Zehnalek J, Trnkova L, Horna A, Sures B, Kizeka R (2007) Palladium biosensor. Electroanalysis 19(18):1909–1914

    CrossRef  CAS  Google Scholar 

  • Albero MS, Ruiz BR, López AMP, Sebastián V, Duque PM, Arruebo M, Santamaría J, Broceta AU (2019) Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal. https://doi.org/10.1038/s41929-019-0333-4

    CrossRef  CAS  Google Scholar 

  • Alt F, Eschnauer HR, Mergler B, Messerschmidt J, Tolg G (1997) A contribution to the ecology and enology of platinum. Fresenius J Anal Chem 357:1013–1019

    CrossRef  CAS  Google Scholar 

  • Angelone M, Armiento G, Cinti D, Somma R, Trocciola V (2002) Platinum and heavy metal concentration levels in urban soils of Naples (Italy). Fresenius Environ Bull 11(8):1–5

    Google Scholar 

  • Anna C (2016) Waste electronic and electrical equipment (WEEE) – scraps or valuable source of precious metals. Polish J Comm Sci 4:43–54. https://doi.org/10.19202/j.cs.2016.04.04

    CrossRef  Google Scholar 

  • Arrassi AE, Liu Z, Evers MV, Blanc N, Bendt G, Saddeler S, Tetzlaff D, Pohl D, Damm C, Schulz S, Tschulik K (2019) Intrinsic activity of oxygen evolution catalysts probed at single CoFe2O4 nanoparticles. J Am Chem Soc 141(23):9197. https://doi.org/10.1021/jacs.9b04516

    CrossRef  CAS  Google Scholar 

  • Balaram V (2005) Platinum group elements (PGE): a new source of environmental pollution. In: Das A (ed) Environment-science and thoughts, vol 2. ACB Publications, Kolkata, pp 87–98

    Google Scholar 

  • Balaram V (2008) Recent advances in the precise determination of platinum group elements (PGE) in exploration studies – a review. J Geol Soc India 72:661–667

    CAS  Google Scholar 

  • Balaram V (2014) Current developments in the quantitative determination of PGE for basic and applied geochemical studies. The Geological Society of India, Bangalore, Special Publication, India vol 2, pp 1–15

    Google Scholar 

  • Balaram V (2016) Recent advances in the determination of elemental impurities in pharmaceuticals – status, challenges and moving frontiers. Trends Anal Chem 80:83–95

    CrossRef  CAS  Google Scholar 

  • Balaram V (2017) Field-portable instruments in mineral exploration: past, present and future. J Appl Geochem 19(4):382–399

    CAS  Google Scholar 

  • Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    CrossRef  CAS  Google Scholar 

  • Balaram V, Rao TG (2003) Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24(6):206–212

    Google Scholar 

  • Balaram V, Mathur R, Banakar VK, Hein JR, Rao CRM, Rao TG, Dasaram B (2006) Determination of the platinum-group elements and gold in manganese nodule reference samples by nickel sulfide fire-assay and Te-coprecipitation with ICP-MS. Ind J Marine Sci 35(1):7–16

    CAS  Google Scholar 

  • Balaram V, Kamala CT, Sreenivasa Rao A, Satyanarayanan M, Subramanyam KSV, Sawant SS (2014) Platinum, Palladium and Rhodium in Road Dust/Top Soils from Major South Indian Cities: Implications on Environment and Human Health, Proc. International Conference, Capital Publishing Company with Springer Germany 240–243

    Google Scholar 

  • Balaram V, Satyanarayanan M, Anabarasu K, Subba Rao DV, Dar AM, Kamala CT, Nirmal Charan S (2019) Hydro-Geochemical Prospecting for Platinum Group of Elements (PGE) in the Sittampundi Layered Ultramafic Complex, Tamil Nadu, India: Pd as an Indicator of Mineralization, Journal of Geological Society of India, 94:341–350. https://doi.org/10.1007/s12594-019-1321-7

    CrossRef  CAS  Google Scholar 

  • Balcerzak M (2011) Methods for the determination of platinum group elements in environmental and biological materials: a review. Crit Rev Anal Chem 41:214–235

    CrossRef  CAS  Google Scholar 

  • Barbante C, Veysseyere A, Ferrari C, van-de-Velde K, Morel G, Capodaglio G, Cescon P, Scarponi G, Boutron C (2001) Greenland snow evidence of large scale atmospheric contamination for platinum, palladium and rhodium. Environ Sci Technol 35:835–839

    CrossRef  CAS  Google Scholar 

  • Barefoot RR (1997) Determination of platinum at trace levels in environmental and biological materials. Environ Sci Technol 31(2):309–314

    CrossRef  CAS  Google Scholar 

  • Barefoot RR (1999) Distribution and speciation of platinum group elements in environmental matrices. Trends Anal Chem 18:702–707

    CrossRef  CAS  Google Scholar 

  • Begerow J, Turfeld M, Dunemann L (1996) Determination of physiological platinum levels in human urine using magnetic sector field inductively coupled plasma mass spectrometry in combination with ultraviolet photolysis. J Anal At Spectrom 11:913–916

    CrossRef  CAS  Google Scholar 

  • Bencs L, Ravindra K, Van Grieken R (2003) Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters. Spectrochim Acta Part B 58:1723–1755

    CrossRef  CAS  Google Scholar 

  • Bocca B, Caimi S, Smichowski P, Gómez D, Caroli S (2006) Monitoring Pt and Rh in urban aerosols from Buenos Aires, Argentina. Sci Total Environ 358(1–3):255–264

    CrossRef  CAS  Google Scholar 

  • Bossi T, Gediga J (2017) The Environmental profile of platinum group metals. Johnson Matthey Technol Rev 61(2):111–121

    CrossRef  CAS  Google Scholar 

  • Boutron CF, Barbante C (2006) Man-induced changes of palladium in polar and Alpine snow and ice archives. In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer, Berlin/Heidelberg. https://doi.org/10.1007/3-540-29220-9_23

    CrossRef  Google Scholar 

  • Cameron EM, Hattori KH (2003) Mobility of palladium in the surface environment: data from a regional lake sediment survey in northwestern Ontario. Geochem Explor Environ Anal 3:299–311

    CrossRef  CAS  Google Scholar 

  • Canda L, Heput T, Ardelean E (2016) Methods for recovering precious metals from industrial waste. Mater Sci Eng 106(1–9):012020. https://doi.org/10.1088/1757-899X/106/1/012020

    CrossRef  Google Scholar 

  • Chandrasekaran K, Karunasagar D (2016) Dispersive liquid–liquid microextraction for simultaneous preconcentration of platinum group elements (Pd, Os, Ir, and Pt) and selected transition elements (Ag, Cd, Ta, and Re) at parts per trillion levels in water and their determination by inductively coupled plasma-mass spectrometry. J Anal At Spectrom 31:1131–1140

    CrossRef  CAS  Google Scholar 

  • Christaudo A, Sera F, Sereveno V, Rocco MD, Lella ED, Picardo M (2005) Occupational hypersensitivity to metal salts, including platinum, in the secondary industry. Allergy 60:159–164

    CrossRef  CAS  Google Scholar 

  • Cinti D, Angelone D, Masi U, Cremisini C (2002) Platinum levels in natural and urban soils from Rome and Latium (Italy): significance for pollution by automobile catalytic converter. Sci Total Environ 293:47–57

    CrossRef  CAS  Google Scholar 

  • Cobelo-Garcia A, Filella M (2017) Electroanalytical techniques for the quantification of technology-critical elements in environmental samples. Curr Opin Electrochem 3(1):78–90

    CrossRef  CAS  Google Scholar 

  • Colombo C (2007) PhD Thesis – The speciation and bioavailability of platinum, palladium and rhodium in the environment, Department of Earth Science and Engineering, Imperial College, London, p 201

    Google Scholar 

  • Colombo C, Oates CJ, Monhemius AJ, Plant JA (2008) Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochemistry: Exploration, Environment, Analysis, 8(1):91–101. https://doi.org/10.1144/1467-7873/07-151

    CAS  Google Scholar 

  • Colombo C, Oates CJ, Monhemius AJ, Plant JA (2008a) Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochem Explor Environ Anal 8:1–11

    CrossRef  Google Scholar 

  • Colombo C, Monhemius AJ, Plant JA (2008b) The estimation of the bioavailability of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test. Sci Total Environ 389:46–51

    CrossRef  CAS  Google Scholar 

  • Cousins CA, Kinloch ED (1976) Some observations on textures and inclusions in alluvial platinoids. Econ Geol 7l:1377–1398

    CrossRef  Google Scholar 

  • Cowley A, Woodward B (2011) A healthy future: platinum in medical applications. Platin Met Rev 55(2):98–107

    CrossRef  Google Scholar 

  • Dahlheimer SR, Neal CR, Fein JB (2007) Potential mobilization of platinum-group elements by siderophores in surface environments. Environ Sci Technol 2007(41):870–875

    CrossRef  CAS  Google Scholar 

  • Diong HT, Das R, Khezri B, Srivastava B, Wang X, Sikdar PK, Webster RD (2015) Anthropogenic platinum group element (Pt, Pd, Rh) concentrations in PM10 and PM2.5 from Kolkata, India. SpringerPlus (2016) 5:1242. https://doi.org/10.1186/s40064-016-2854-5

    CrossRef  CAS  Google Scholar 

  • Dissanayake DS, Kritsotakis K, Tobschall HJ (1983) The abundance of Au, Pt, Pd and the mode of heavy metal fixation in highly polluted sediments from the Rhine river near Mainz, West Germany. Int J Environ Stud 22:109–119

    CrossRef  Google Scholar 

  • Ditlow CM (1975) Federal regulation of motor vehicle emissions under the clean air amendments of 1970. Ecol Law Q 4:495

    Google Scholar 

  • Djingova R, Kovacheva P, Wagner G, Markert B (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308:235–246

    CrossRef  CAS  Google Scholar 

  • Dong H, Zhao J, Chen J, Wu Y, Li B (2015) Recovery of platinum group metals from spent catalysts: a review. Int J Miner Process 145:108–113. https://doi.org/10.1016/j.minpro.2015.06.009

    CrossRef  CAS  Google Scholar 

  • Dubiella-Jackowska, A., Polkowska, Z and Namieśnik, J (2007) Platinum Group Elements: A Challenge for Environmental Analytics. Polish J. of Environ. Stud. 16(3):329–345

    Google Scholar 

  • Eliopoulos EM, Sfendoni T (2010) Environmental impact of Pt, Pd, Rh and Au from catalytic converters along roadsides: the case of Attica, Greece. In: Proceedings of the XIX CBGA congress, Thessaloniki, Special Volume 100, pp 47–54

    Google Scholar 

  • Ely JC, Neal CR, Kulpa CF, Schneegurt MA, Seidler JA, Jain JC (2001) Implications of platinum-group element accumulation along US roads from catalytic-converter attrition. Environ Sci Technol 35:3816–3822

    CrossRef  CAS  Google Scholar 

  • EMEA-European Medicines Agency Pre-authorization Evaluation of Medicines for Human Use (2007) London, Doc Ref CPMP/SWP/QWP/4446/00 corr

    Google Scholar 

  • Essumang DK (2010) First determination of the levels of platinum group metals in Manta birostris (Manta ray) caught along the Ghanaian coastline. Bull Environ Contam Toxicol 84(6):720–725. https://doi.org/10.1007/s00128-010-0019-8

    CrossRef  CAS  Google Scholar 

  • Eunice YL, Jue L, Elizabeth MN, Hammond SK, Nadeau KC, Eisen EA, Balmes JR (2017) Traffic-related air pollution and telomere length in children and adolescents living in Fresno, CA: a pilot study. JOEM American College of Occupational and Environmental Medicine 59(5):446–452

    CrossRef  CAS  Google Scholar 

  • European Commission (2017) Study on the review of the list of critical raw materials. Publications Office of the European Union, Luxembourg, pp 230–310

    Google Scholar 

  • Faber J, Brodzik K (2018) Influence of preparation and analysis methods on determination of Rh, Pd and Pt content in automotive catalysts samples. Mater Sci Eng 421:042018. https://doi.org/10.1088/1757-899X/421/4/042018

    CrossRef  Google Scholar 

  • Farago ME, Kavanagh P, Blanks R, Kelly J, Kazantzis G, Thornton I, Simpson PR, Cook JM, Delves HT, Hall GE (1998) Platinum concentrations in urban road dust and soil, and in blood and urine in the United Kingdom. Analyst 123:451–454

    CrossRef  CAS  Google Scholar 

  • Fornalczyk A, Saternus M (2009) Removal of platinum group metals from the used auto catalytic converter. Metalurgija 48:133–136

    CAS  Google Scholar 

  • Fortin C, Wang F, Pitre D (2011) Critical review of platinum group elements (Pd, Pt, Rh) in aquatic ecosystems. Research Report No R-1269 Ecological Assessment Division, Science and Technology Branch Environment Canada, Gatineau, pp 1–47

    Google Scholar 

  • Freyschlag CG, Madix RJ (2011) Precious metal magic: catalytic wizardry. Mater Today 14(4):134–142

    CrossRef  CAS  Google Scholar 

  • Fritsche J, Meisel T (2004) Determination of anthropogenic input of Ru, Rh, Pd, Re, Os, Ir and Pt in soils along Austrian motorways by isotope dilution ICP-MS. Sci Total Environ 325(1–3):145–154

    CrossRef  CAS  Google Scholar 

  • Gabrielli P, Varga A, Barbante C, Boutron C, Cozzi G, Gaspari V, Planchon F, Cairns W, Hong S, Ferraria C, Capodaglio G (2004) Determination of Ir and Pt down to the sub-femtogram per gram level in polar ice by ICP-SFMS using preconcentration and a desolvation system. J Anal At Spectrom 19:831–837

    CrossRef  CAS  Google Scholar 

  • Gagnon Z, Newkirk C, Hicks S (2006) Impacts of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study. J Environ Sci Health A 41:397–414

    CrossRef  CAS  Google Scholar 

  • Gomez B, Gomez M, Sanchez JL, Fernandez R, Palacios MA (2001) Platinum and rhodium distribution in airborne particulate matter and road dust. Sci Total Environ 269:131–144

    CrossRef  CAS  Google Scholar 

  • Gómez B, Palacios MA, Gómez M, Sanchez JL, Morrison G, Rauch S, Mcleod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Petterson C, Wass U (2002) Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci Total Environ 299:1–19

    CrossRef  Google Scholar 

  • Govt. UK (2006) https://cot.food.gov.uk/sites/default/files/cot/cotstatementtds200808.pdf

  • Hartley FR (1992) Chemistry of the platinum group metals: recent developments. Elsevier, Amsterdam

    Google Scholar 

  • Haus N, Zimmermann S, Sures B (2009) Precious metals in urban aquatic systems: platinum, palladium and rhodium: sources, occurrence, bioavailability and effects. In: Fatta-Kassinos D, Bester K, Kümmerer K (eds) Xenobiotics in the urban water cycle. Environmental pollution, vol 16. Springer, Dordrecht, pp 73–86. https://doi.org/10.1007/978-90-481-3509-7_4

    Google Scholar 

  • Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A Gen 221:443–457

    CrossRef  CAS  Google Scholar 

  • Herr CEW, Jankofsky M, Angerer J, Kuster W, Stilianakis I, Gieler U, Eikmann T (2003) Influences on human internal exposure to environmental platinum. J Expo Anal Environ Epidemiol 13:24–30

    CrossRef  CAS  Google Scholar 

  • Higney E, Olive V, MacKenzie AB, Pulford ID (2002) Isotope dilution ICP–MS analysis of platinum in road dusts from west Central Scotland. Appl Geochem 17:1123–1129

    CrossRef  CAS  Google Scholar 

  • Hoffman EL (1992) Instrumental neutron activation in geoanalysis. J Geochem Explor 44:297–319

    CrossRef  CAS  Google Scholar 

  • Hooda PS, Miller A, Edwards AC (2008) The plant availability of auto-cast platinum group elements. Environ Geochem Health 30:135–139. https://doi.org/10.1007/s10653-008-9134-4

    CrossRef  CAS  Google Scholar 

  • Hwang HM, Fiala MJ, Park D, Wade TL (2016) Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. Int J Urban Sci 1–29. https://doi.org/10.1080/12265934.2016.1193041

    CrossRef  Google Scholar 

  • Hwang HM, Fiala MJ, Wade TL, Park D (2018) Review of pollutants in urban road dust: part II. Organic contaminants from vehicles and road management. Int J Urban Sci 1–21. https://doi.org/10.1080/12265934.2018.1538811

    CrossRef  Google Scholar 

  • Iavicoli I, Bocca B, Carelli G, Caroli S, Caimi S, Alimonti A, Fontana L (2007) Biomonitoring of tram drivers exposed to airborne platinum, rhodium and palladium. Int Arch Occup Environ Health 81(1):109–114

    CrossRef  CAS  Google Scholar 

  • ICH (2013) The international conference on harmonization of technical requirements and registration of pharmaceuticals for human use (ICH), guideline for elemental impurities Q3D. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-32.pdf

  • Johnson DE, Prevost RJ, Tillery JB, Camann DE, Hosenfeld JM (1976) Baseline levels of platinum and palladium in human tissue. EPA/600/1-76/019. Southwest Research Institute, San Antonio. NTIS PB-251 885/0, 252pp

    Google Scholar 

  • Johnstone TC, Park GY, Lippard SJ (2014) Understanding and improving platinum anticancer drugs – phenanthriplatin. Anticancer Res 34(1):471–476

    CAS  Google Scholar 

  • Kamala CT, Balaram V, Satyanarayanan M, Subramanyam KVS (2012) Source identification studies of PGE and other heavy metals released into the urban environment and development of methods for their analysis. J Appl Geochem Special Volume:11–25

    Google Scholar 

  • Kamala CT, Balaram V, Satyanarayanan M, Kumar AK, Subramanyam KSV (2015) Biomonitoring of traffic police exposed to PGE (Pt, Pd, Rh) in urban environments. Arch Environ Contam Toxicol 68:421–431. https://doi.org/10.1007/s00244-014-0114-7

    CrossRef  CAS  Google Scholar 

  • Kamala CT, Balaram V, Satyanarayana M, Subramanyam KSV, Sawant SS (2016) Biomonitoring of PGE (Pt, Pd, Rh) in the occupationally exposed traffic police officers of Hyderabad city. J Appl Geochem 18(2):181–191

    CAS  Google Scholar 

  • Kamikoriyama Y, Imamura H, Muramatsu A, Kanie K (2019) Ambient aqueous-phase synthesis of copper nanoparticles and nanopastes with low-temperature sintering and ultra-high bonding abilities. Sci Rep 9(1). https://doi.org/10.1038/s41598-018-38422-5

  • Keav S, Matam SK, Ferri D, Weidenkaff A (2014) Structured perovskite-based catalysts and their application as three-way catalytic converters – a review. Catalysts 4:226–255. https://doi.org/10.3390/catal4030226

    CrossRef  CAS  Google Scholar 

  • Konig HP, Hertel RF, Koch W, Rosner G (1992) Determination of platinum emissions from a three-way catalyst-equipped gasoline engine. Atmos Environ Part A 26(5):741–745

    CrossRef  Google Scholar 

  • Kovacheva P, Djingova R (2002) Ion-exchange method for separation and concentration of platinum and palladium for analysis of environmental samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 464:7–13

    CrossRef  CAS  Google Scholar 

  • Kowalska j, Asztemborska M, Bystrzejewska-Piotrowska G (2004) Platinum uptake by mustard (Sinapis alba L.) and maize (Zea mays L.) plants. Nukleonika 49(Supplement 1):S31–S34

    CAS  Google Scholar 

  • Kyte ET (2002) Tracers of the extraterrestrial component in sediments and inferences for Earth's accretion history, in Koeberl, C., and MacLeod, K.G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond: Boulder, Colorado, Geological Society of America, Special Paper 356, p. 21–38

    Google Scholar 

  • Ladonin DV (2018) Platinum-group elements in soils and street dust of the southeastern administrative district of Moscow. Eurasian Soil Sci 51(3):268–276

    CrossRef  CAS  Google Scholar 

  • Lee HY, Chon HT, Sager M, Marton L (2012) Platinum pollution in road dusts, roadside soils, and tree barks in Seoul. Korea Environ Geochem Health 34(Suppl 1):5–12. https://doi.org/10.1007/s10653-011-9403-5

    CrossRef  CAS  Google Scholar 

  • Lesniewska BA, Godlewska-Zyłkiewicz B, Bocca B, Caimi S, Caroli S, Hulanicki A (2004) Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Białystok area (Poland): a pilot study. Sci Total Environ 321:93–104

    CrossRef  CAS  Google Scholar 

  • Li P-M, Gao X-L (2012) A migration and transformation of anthropogenic platinum group elements in environment: a review. Yingyong Shengtai Xuebao 23(12):3514–3525

    CAS  Google Scholar 

  • Linde SJL, Franken A, du Plessis JL (2017) Occupational respiratory exposure to platinum group metals: a review and recommendations. Chem Res Toxicol 2017(30):1778–1790. https://doi.org/10.1021/acs.chemrestox.7b00184

    CrossRef  CAS  Google Scholar 

  • Lindell B (1997) DECOS and NEG basis for an occupational health standard – platinum. Arbete och hälsa, Arbetslivsinstitutet, pp 1–79 http://www.inchem.org/documents/kemi/kemi/ah1997_14.pdf

  • Liu TZ, Bhatnagar RS (1980) Inhibition of aldolase by palladium. Bull Environ Contam Toxicol 24(1):484–488. https://doi.org/10.1007/bf01608144

    CrossRef  CAS  Google Scholar 

  • Liu Y, Wang Z, Zhang L, Tian F, Liu C (2015) Spatial and temporal distribution of platinum group elements (PGEs) in roadside soils from Shanghai and Urumqi, China. J Soils Sediments 15:1947–1959. https://doi.org/10.1007/s11368-015-1129-z

    CrossRef  CAS  Google Scholar 

  • Liu HY, Dunea D, Iordache S, Pohoata A (2018) A review of airborne particulate matter effects on young children’s respiratory symptoms and diseases. Atmosphere 9(150):1–18. https://doi.org/10.3390/atmos9040150

    CrossRef  CAS  Google Scholar 

  • Löffler T, Meyer H, Savan A, Wilde P, Manjón AG, Chen Y, Ventosa E, Scheu C, Ludwig A, Schuhmann W (2018) Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv Energy Mater 8(34):1802269. https://doi.org/10.1002/aenm.201802269

    CrossRef  CAS  Google Scholar 

  • Luderwald S, Seitz F, Seisenbaeva GA, Kessler VG, Schulz R, Bundschuh M (2016) Palladium nanoparticles: is there a risk for aquatic ecosystems? Bull Environ Contam Toxicol 97(2):153–158. https://doi.org/10.1007/s00128-016-1803-x

    CrossRef  CAS  Google Scholar 

  • Machida M, Ueno M, Omura T, Kurusu S, Hinokuma S, Nanba T, Shinozaki O, Furutani H (2017) CeO2-grafted Mn–Fe oxide composites as alternative oxygen-storage materials for three-way catalysts: laboratory and chassis dynamometer tests. Ind Eng Chem Res 56(12):3184–3193

    CrossRef  CAS  Google Scholar 

  • Makwana NR, Amin CM, Dabhi SK (2013) Development and performance analysis of nickel based catalytic converter. Int J Adv Eng Technol IV, II:10–13

    Google Scholar 

  • Mason B (1966) Principles of geochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Mathew MD, Mathew TD, Liu J, Joshua MW, Felicia RL, Lee S, Michaelides A, Maria FS, Stamatakis M, Sykes EC (2018) Pt/Cu single-atom alloys a coke-resistant catalyst for efficient C–H activation. Nat Chem 10:325–332

    CrossRef  CAS  Google Scholar 

  • Mathur R, Balaram V, Satyanarayanan M, Sawant SS, Ramash SL (2011) Anthropogenic platinum, palladium and rhodium concentrations in road dusts from Hyderabad city, India. Environ Earth Sci 62:1085–1098

    CrossRef  CAS  Google Scholar 

  • Mathur R, Balaram V, Satyanarayanan M, Sawant SS (2016) Assessment of heavy metal contamination of road dusts from industrial areas of Hyderabad, India. Environ Assess Monit 188:514. https://doi.org/10.1007/s10661-016-5496-8

    CrossRef  CAS  Google Scholar 

  • Merget R, Gerhard R (2001) Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci Total Environ 270(1–3):165–173

    CrossRef  CAS  Google Scholar 

  • Mihaljevič M, Galušková I, Strnad L, Majer V (2013) Distribution of platinum group elements in urban soils, comparison of historically different large cities Prague and Ostrava, Czech Republic. J Geochem Explor 124:212–217

    CrossRef  CAS  Google Scholar 

  • Morcelli CP, Figueiredo AM, Sarkis JE, Enzweiler J, Kakazu M, Sigolo JB (2005) PGEs and other traffic-related elements in roadside soils from São Paulo. Brazil Sci Total Environ 345(1–3):81–91

    CrossRef  CAS  Google Scholar 

  • Morgan C (2014) 40 years of cleaner air: the evolution of the autocatalyst. Johnson Matthey Technol Rev 58(4):217–220

    CrossRef  Google Scholar 

  • Nassar, N. T. (2015). Limitations to elemental substitution as exemplified by the platinum-group metals. Green Chemistry, 17(4):2226–2235. https://doi.org/10.1039/c4gc02197e

    CrossRef  CAS  Google Scholar 

  • Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste – an emerging threat to the environment of urban India. J Environ Health Sci Eng 12:36, 1–9

    CrossRef  CAS  Google Scholar 

  • Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, Delariva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358:1419–1423

    CrossRef  CAS  Google Scholar 

  • Nischkauer W, Herincs E, Puschenreiter M, Wenzel W, Limbeck A (2013) Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 89:60–65. https://doi.org/10.1016/j.sab.2013.08.013

    CrossRef  CAS  Google Scholar 

  • Ochir T, Erdene S, Yeongcheol H, Youngsook H (2008) Determination of platinum and iridium in rainwaters by HR-ICP-MS. AGU Fall Meeting Abstracts

    Google Scholar 

  • Okorie IA, Enwistle J, Dean JR (2015) Platinum group elements in urban road dust. Curr Sci 109:5,938–5,942

    CrossRef  Google Scholar 

  • Orecchio S, Amorello D (2011) Platinum levels in urban soils from Palermo (Italy); analytical method using voltammetry. Microchem J 99(2):283–288

    CrossRef  CAS  Google Scholar 

  • Paklin K (2019) Use of handheld x-ray fluorescence to analyze platinum group metals in catalytic converters. Spectroscopy 34(6):26–31

    Google Scholar 

  • Palacios MA, Gómez M, Moldovan M, Gómez B (2000) Assessment of environmental contamination risk by Pt, Rh and Pd from automobile catalyst. Microchem J 67:105

    CrossRef  CAS  Google Scholar 

  • Pan S, Zhang G, Sun Y, Chakraborty P (2009) Accumulating characteristics of platinum group elements (PGE) in urban environments, China. Sci Total Environ 407:4248–4252

    CrossRef  CAS  Google Scholar 

  • Pan S, Sun Y, Zhang G, Chakraborty P (2013) Spatial distributions and characteristics of platinum group elements (PGEs) in urban dusts from China and India. J Geochem Explor 128:153–157

    CrossRef  CAS  Google Scholar 

  • Paraskevas M, Tsopelas F, Ochsenkühn-Petropoulou M (2012) Determination of Pt and Pd in particles emitted from automobile exhaust catalysts using ion-exchange matrix separation and voltammetric detection. Microchim Acta 176:235–242. https://doi.org/10.1007/s00604-011-0724-y

    CrossRef  CAS  Google Scholar 

  • Parthasarathy P, Chatterjee S, Reddy MRP, Bulbule KA (2018) Environmentally sound recycling technology of scrap printed circuit boards for developing countries. Int J Sci Eng Res 9:3,1713–3,1725

    Google Scholar 

  • Petrucci F, Bocca B, Alimonti A, Caroli S (2000) Determination of Pd, Pt and Rh in airborne particulate and road dust by high-resolution ICP-MS: a preliminary investigation of the emission from automotive catalysts in the urban area of Rome. J Anal At Spectrom 15:525–528

    CrossRef  CAS  Google Scholar 

  • Qi Z, Xiao C, Liu C, Goh TW, Zhou L, Ganesh RM, Pei Y, Li X, Curtiss LA, Huang W (2017) Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J Am Chem Soc 139(13):4762. https://doi.org/10.1021/jacs.6b12780

    CrossRef  CAS  Google Scholar 

  • Rao NVC, Lehmann B, Balaram V (2014) Platinum-group element (PGE) geochemistry of Deccan orangeites, Bastar craton, Central India: implication for a non-terrestrial origin for iridium enrichment at the K–Pg boundary. Asian J. Earth Sci 84:24–33

    Google Scholar 

  • Rauch S, Ehrenbrink BP (2015) Sources of platinum group elements in the environment. In: Zereini F, Wiseman CLS (eds) Platinum metals in the environment. Springer, Berlin/Heidelberg, pp 3–17

    CrossRef  Google Scholar 

  • Rauch S, Fatoki OS (2013) Anthropogenic Platinum Enrichment in the Vicinity of Mines in the Bushveld Igneous Complex, South Africa. Water Air Soil Pollution 224:1395. https://doi.org/10.1007/s11270-012-1395-y

  • Rauch S, Hemond HF (2003) Sediment-based evidence of platinum concentration changes in an urban lake near Boston. Mass Environ Sci Technol 37:3283–3288

    CrossRef  CAS  Google Scholar 

  • Rauch S, Morrison GM (2008) Environmental relevance of the platinum-group elements. Elements 4:259–263

    CrossRef  CAS  Google Scholar 

  • Rauch S, Lu M, Morrison GM (2001) Heterogeneity of platinum group metals in airborne particles. Environ Sci Technol 35:595

    CrossRef  CAS  Google Scholar 

  • Ravindra K, Bencs L, Grieken RV (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318(1–3):1–43

    CrossRef  CAS  Google Scholar 

  • Reddy GS, Rao CRM (1999) Analytical techniques for the determination of precious metals in geological and related materials. Analyst, 124, 1531–1540

    CrossRef  CAS  Google Scholar 

  • Reddy MV, Babu KS, Balaram V, Satyanarayanan M (2012) Assessment of the effects of municipal sewage, immersed idols and boating on the heavy metal and other elemental pollution of surface water of the eutrophic Hussainsagar Lake (Hyderabad, India). Environ Monit Assess 184(4):1991–2000

    CrossRef  CAS  Google Scholar 

  • Rinkovec J, Pehnec G, Žužul S, Rončević S (2017) Determination of platinum group elements in particulate matter by inductively coupled plasma mass spectrometry. Bull Environ Contam Toxicol 98(5):672–676. https://doi.org/10.1007/s00128-017-2061-2

    CrossRef  CAS  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust, treatise on geochemistry, 2nd edn. pp 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

    Google Scholar 

  • Sager M, Chon HT, Marton L (2015) Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir. Environ Geochem Health 37:181–193

    CrossRef  CAS  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant SS, Subramanyam KSV, Krishna V, Dasaram B, Manikyamba C (2018) Rapid determination of REE, PGE and other trace elements in geological and environmental materials by HR-ICP-MS. Spectroscopy 39(1):1–15

    Google Scholar 

  • Scheff PA, Wadden RA, Ticho KKL, Nakonechniy JJ, Prodanchuk M, Hryhorczuk DO (1997) Toxic air pollutants in Chernivtsi, Ukraine. Environ Int 23(3):273–290

    CrossRef  Google Scholar 

  • Sen IS, Peucker-Ehrenbrink B, Geboy N (2013) Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA. Environ Sci Technol 47:130827135610007. https://doi.org/10.1021/es4016348

    CrossRef  CAS  Google Scholar 

  • Shahar H, Majid AA (2007) Platinum, palladium and rhodium levels in road dusts of Kuala Lumpur and Genting Sempah tunnel, Pahang. Malays J Anal Sci 11(1):145–153

    Google Scholar 

  • Shinozaki HF (2017) CeO2-grafted Mn–Fe oxide composites as alternative oxygen-storage materials for three-way catalysts: laboratory and chassis dynamometer tests. Ind Eng Chem Res 56(12):3184. https://doi.org/10.1021/acs.iecr.6b04468

    CrossRef  CAS  Google Scholar 

  • Simpson LA, Hearn R, Catterick T (2004) The development of a high accuracy method for the analysis of Pd, Pt and Rh in auto catalysts using a multi-collector ICP-MS. J Anal At Spectrom 19:1244–1251

    CrossRef  CAS  Google Scholar 

  • Sobrova P, Zehnalek J, Adam V, Beklova M, Kizek R (2012) The effects on soil/water/plant/animal systems by platinum group elements. Cent Eur J Chem 10(5):1369–1382

    CAS  Google Scholar 

  • Sohn, H. Camacho-Bunquin, J. Langeslay, R. R. Ignacio-de Leon, P. A. Niklas, J. Poluektov, O. G. Liu, C. Connell, J. G. Yang, D Kropf, J¸ Kim, H. Stair, P. C. Ferrandon, M. Delferro M (2017) Isolated, well-defined organovanadium(iii) on silica: single-site catalyst for hydrogenation of alkenes and alkynes. Chem Commun, 53, 7325–7328; https://doi.org/10.1039/C7CC01876B

    CrossRef  CAS  Google Scholar 

  • Soyol-Erdene TO, Huh Y, Hong S, Hur SD (2011) A 50-year record of platinum, iridium, and rhodium in Antarctic snow: volcanic and anthropogenic sources. Environ Sci Technol 2011(45):5929–5935

    CrossRef  CAS  Google Scholar 

  • Spada N, Bozlaker A, Chellam S (2012) Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma–mass spectrometry: evidence for the release of platinum group and anthropogenic metals from motor vehicles. Anal Chim Acta 735:1–8

    CrossRef  CAS  Google Scholar 

  • Stevens A (1998) Platinum levels in raptor populations throughout Sweden. Master Thesis, Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Strnad L, Mihaljevič M, Ettler V, Barsová L, Zuna M, Šebek O (2008) Distribution of the platinum group elements in peat deposit near a historic lead and silver mining district. Bull Environ Contam Toxicol 81(2):159–163. https://doi.org/10.1007/s00128-008-9407-8

    CrossRef  CAS  Google Scholar 

  • Sutherland RA, Pearson DG, Ottley CJ (2008) Grain size partitioning of platinum-group elements in road-deposited sediments: implications for anthropogenic flux estimates from autocatalysts. Environ Pollut 151:503–515

    CrossRef  CAS  Google Scholar 

  • Teutsch N, Harlavan Y, Halicz L (2013) Levels and distribution of Platinum Group Metals (PGM) in Israel. Ministry of National infrastructures Energy and Water Resources Geological Survey of Israel, GSI/23, pp 1–38

    Google Scholar 

  • UK (2008) European medicines agency evaluation of medicines for human use. London, pp 1–18; https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-markers-used-quantitative-qualitative-analysis-herbal-medicinal-products_en.pdf

  • USP (2017) General chapter <232> elemental impurities – limits: 2nd supplement of USP 35-NF 30; https://www.usp.org/chemical-medicines/elemental-impurities-updates

  • Van der Horst C, Silwana B, Iwuoha E, Somerset V (2012) Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources. J Environ Sci Health A 47:2084–2093

    CrossRef  CAS  Google Scholar 

  • Van der Horst C, Silwana B, Iwuoha E, Somerset V (2018) Spectroscopic and voltammetric analysis of platinum group metals in road dust and roadside soil. Environments 5:120, 1–16. https://doi.org/10.3390/environments5110120

    CrossRef  Google Scholar 

  • Van Loon JC, Barefoot RR (1991) Determination of the precious metals selected instrumental methods. Wiley, Chichester, p 286

    Google Scholar 

  • Varrica D, Dongarra G, Sabatino G, Monna F (2003) Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ Geol 44:222–230

    CrossRef  CAS  Google Scholar 

  • Vlasankova RK (2001) Determination of trace amounts of platinum group metals by inductively coupled plasma atomic emission spectrometry, after separation and preconcentration, in environmental samples. Chem List 95:805–806

    Google Scholar 

  • Wang Y, Li X (2012) 2012 International Symposium on Safety Science and Technology Health risk of platinum group elements from automobile catalysts. Procedia Engineering, 45:1004–1009

    CrossRef  CAS  Google Scholar 

  • Ward NI, Dudding LM (2004) Platinum emissions and levels in motorway dust samples: influence of traffic characteristics. Sci Total Environ 334–335:457–463. https://doi.org/10.1016/j.scitotenv.2004.04.049

    CrossRef  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    CrossRef  CAS  Google Scholar 

  • Whiteley JD (2005) Seasonal variability of platinum, palladium and rhodium (PGE) levels in road dusts and roadside soils, Perth, Western Australia. Water Air Soil Pollut 160(1–4):77–93

    CrossRef  CAS  Google Scholar 

  • WHO (2000) Chapter 6.11 Platinum – WHO/Europe – World Health Organization WHO Regional Office for Europe, Copenhagen/Denmark, pp 1–13

    Google Scholar 

  • WHO (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Report on a WHO Working Group, Bonn, pp 1–98

    Google Scholar 

  • Williams WC, Lehmann JR, Boykin MK, Selgrade MK, Lehman DM (2015) Lung function change in mice sensitized to ammonium hexachloroplatinate. J Inhal Toxicol 27(10):468–480

    CrossRef  CAS  Google Scholar 

  • Wiseman CLS, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407:2493–2500

    CrossRef  CAS  Google Scholar 

  • Won SW, Mao J, Kwak IS, Sathishkumar M, Yun YS (2007) Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour Technol 101:1135–1140

    CrossRef  CAS  Google Scholar 

  • Wood SA (1990) The interaction of dissolved platinum with fulvic acid and simple organic acid analogues in aqueous solutions. Can Mineral 2E:665–673

    Google Scholar 

  • Yakoumis I, Moschovi AM, Giannopoulou I, Panias D (2018) Real life experimental determination of platinum group metals content in automotive catalytic converters. IOP Conf Ser: Mater Sci Eng 329:012009. https://doi.org/10.1088/1757-899X/329/1/012009

    CrossRef  Google Scholar 

  • Yoo JS (1998) Metal recovery and rejuvenation of metal-loaded spent catalyst. Catal Today 44:27–46

    CrossRef  CAS  Google Scholar 

  • Yoon H, Park CS, Yoon C, Hong J, Kim NS, Han KN (2005) Quantitative analysis of platinum group metals using X-ray fluorescence spectrometry. Miner Metall Process 22(2):101–106

    CAS  Google Scholar 

  • York A (2011) The evolution of catalytic converters in cars. Educ Chem 1–6. https://eic.rsc.org/feature/the-evolution-of-catalytic-converters/2020252.article

  • Yudovskaya MA, Tessalina S, Distler VV, Chaplygin IV, Chugaev AV, Dikov YP (2008) Behavior of highly-siderophile elements during magma degassing: a case study at the Kudryavy volcano. Chem Geol 248(3–4):318–341

    CrossRef  CAS  Google Scholar 

  • Zereini F, Alsenz H, Wiseman CLS, Püttmann W, Reimer E, Schleyer R, Bieber E, Wallasch M (2012) Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: concentrations and spatial patterns of distribution. Sci Total Environ 416:261–268

    CrossRef  CAS  Google Scholar 

  • Zereini F, Müller I, Wiseman CLS (2015) The influence of anionic species (Cl, NO3, SO42−) on the transformation and solubility of platinum in platinum/aluminum oxide model substance. In: Zereini F, Wiseman C (eds) Platinum metals in the environment. Environmental science and engineering. Springer, Berlin/Heidelberg, pp 277–288

    Google Scholar 

  • Zhad H, Lai R (2018) Application of calcium-binding motif of e-cadherin for electrochemical detection of Pb(II). Anal Chem 90(11):6519–6525. https://doi.org/10.1021/acs.analchem.7b05458

    CrossRef  CAS  Google Scholar 

  • Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325. https://doi.org/10.1021/acs.chemrev.7b00063

    CrossRef  CAS  Google Scholar 

  • Zimmermann S, Sures B, Ruchter N (2015) Laboratory studies on the uptake and bioaccumulation of PGE by aquatic plants and animals. In: Zereini F, Wiseman C (eds) Platinum metals in the environment. Environmental science and engineering. Springer, Berlin/Heidelberg, pp 361–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balaram .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Balaram, V. (2020). Environmental Impact of Platinum, Palladium, and Rhodium Emissions from Autocatalytic Converters – A Brief Review of the Latest Developments. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_194-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science