Skip to main content

Relevance of Transporters in Clinical Studies

  • Living reference work entry
  • First Online:
  • 334 Accesses

Abstract

It has become clear that drug disposition is not just a result of passive diffusion and metabolizing enzymes. Numerous transporters were identified in recent years to be involved in the absorption, distribution, and excretion of essentially all drugs. While transporters of the solute carrier (SLC) family are mainly involved in the uptake of drugs into cells, ATP-binding cassette (ABC) transporters are responsible for their efflux. Among the more than 420 SLC and 47 ABC transporters, only about 25 seem to be important for the disposition of over-the-counter and prescription drugs. Among these the Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA) have identified seven transporters which need to be tested for investigational drugs and an additional five transporters that are considered to be important. Two of the seven transporters, the multidrug resistance protein 1 (MDR1) and the breast cancer resistance protein (BCRP), are ABC transporters. The other five, the organic cation transporter 2 (OCT2), the organic anion transporter 1 (OAT1) and 3 (OAT3), and the organic anion transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3), are SLC transporters. If additional transporters become clinically relevant, they may be added by the regulatory agencies to the list or required transporters.

This is a preview of subscription content, log in via an institution.

References and Further Reading

  • Abdullahi W, Davis TP, Ronaldson PT (2017) Functional expression of P-glycoprotein and organic anion transporting polypeptides at the blood-brain barrier: understanding transport mechanisms for improved CNS drug delivery? AAPS J 19:931–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  PubMed  Google Scholar 

  • Bednarczyk D (2010) Fluorescence-based assays for the assessment of drug interaction with the human transporters OATP1B1 and OATP1B3. Anal Biochem 405:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belzer M, Morales M, Jagadish B et al (2013) Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther 346:300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer KL, Keppler D, Hoffmaster KA et al (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt G, Burckhardt BC (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 201:29–104

    Article  CAS  Google Scholar 

  • Chun SE, Thakkar N, Oh Y et al (2017) The N-terminal region of organic anion transporting polypeptide 1B3 (OATP1B3) plays an essential role in regulating its plasma membrane trafficking. Biochem Pharmacol 131:98–105

    Article  CAS  PubMed  Google Scholar 

  • Cleophas MC, Joosten LA, Stamp LK et al (2017) ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med 10:129–142

    PubMed  PubMed Central  CAS  Google Scholar 

  • Droge C, Bonus M, Baumann U et al (2017) Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol 67:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Drozdzik M, Groer C, Penski J et al (2014) Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol Pharm 11:3547–3555

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Urban TJ, Leabman MK et al (2006) Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci 95:25–36

    Article  CAS  PubMed  Google Scholar 

  • Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  • Gong IY, Kim RB (2013) Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab Pharmacokinet 28:4–18

    Article  CAS  PubMed  Google Scholar 

  • Gui C, Obaidat A, Chaguturu R et al (2010) Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics 4:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med 34:396–412

    Article  CAS  Google Scholar 

  • Heredi-Szabo K, Glavinas H, Kis E et al (2009) Multidrug resistance protein 2-mediated estradiol-17beta-D-glucuronide transport potentiation: in vitro-in vivo correlation and species specificity. Drug Metab Dispos 37:794–801

    Article  CAS  PubMed  Google Scholar 

  • Hillgren KM, Keppler D, Zur AA et al (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther 94:52–63

    Article  CAS  PubMed  Google Scholar 

  • Hira D, Terada T (2018) BCRP/ABCG2 and high-alert medications: biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem Pharmacol 147:201–210

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med 34:413–435

    Article  CAS  Google Scholar 

  • Lee CA, O’Connor MA, Ritchie TK et al (2015) Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos 43:490–509

    Article  CAS  PubMed  Google Scholar 

  • Link E, Parish S, Armitage J et al (2008) SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med 359:789–799

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zheng X, Yu Q et al (2016) Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med 8:348ra397

    Google Scholar 

  • Lund M, Petersen TS, Dalhoff KP (2017) Clinical implications of P-glycoprotein modulation in drug-drug interactions. Drugs 77:859–883

    Article  CAS  PubMed  Google Scholar 

  • Morgan RE, Trauner M, van Staden CJ et al (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118:485–500

    Article  CAS  PubMed  Google Scholar 

  • Motohashi H, Inui K (2013) Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Asp Med 34:661–668

    Article  CAS  Google Scholar 

  • Nies AT, Koepsell H, Damme K et al (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:105–167

    Article  CAS  Google Scholar 

  • Patel M, Taskar KS, Zamek-Gliszczynski MJ (2016) Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol 56(Suppl 7):S23–S39

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer ND, Hardwick RN, Brouwer KL (2014) Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 54:509–535

    Article  CAS  PubMed  Google Scholar 

  • Roninson IB, Chin JE, Choi KG et al (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 83:4538–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidijam M, Karimi Dermani F, Sohrabi S et al (2018) Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 48:506–532

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA et al (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostedt N, Holvikari K, Tammela P et al (2017) Inhibition of breast cancer resistance protein and multidrug resistance associated protein 2 by natural compounds and their derivatives. Mol Pharm 14:135–146

    Article  CAS  PubMed  Google Scholar 

  • Staud F, Cerveny L, Ahmadimoghaddam D et al (2013) Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol 45:2007–2011

    Article  CAS  PubMed  Google Scholar 

  • Stieger B (2011) The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 201:205–259

    Article  CAS  Google Scholar 

  • Stieger B, Hagenbuch B (2016) Recent advances in understanding hepatic drug transport. F1000Res 5:2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada T, Hira D (2015) Intestinal and hepatic drug transporters: pharmacokinetic, pathophysiological, and pharmacogenetic roles. J Gastroenterol 50:508–519

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Cornwell MM, Gottesman MM et al (1986) The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 141:956–962

    Article  CAS  PubMed  Google Scholar 

  • Urquhart BL, Kim RB (2009) Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • van de Steeg E, Stranecky V, Hartmannova H et al (2012) Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 122:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner DJ, Hu T, Wang J (2016) Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 111:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler JD, Grip LT, Mendell J et al (2013) The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 61:2495–2502

    Article  CAS  PubMed  Google Scholar 

  • Wolking S, Schaeffeler E, Lerche H et al (2015) Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: update of the literature. Clin Pharmacokinet 54:709–735

    Article  CAS  PubMed  Google Scholar 

  • Yee SW, Nguyen AN, Brown C et al (2013) Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci 102:3451–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Wang J (2016) Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 6:363–373

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the National Institutes of Health grant GM077336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Hagenbuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hagenbuch, B. (2018). Relevance of Transporters in Clinical Studies. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics