Skip to main content

Histone Deacetylase Inhibitor Tributyrin and Vitamin A in Cancer

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Bioactive food compounds like vitamin A and the butyrate’s prodrug tributyrin have preventive activities against different types of cancer, and their use in association could represent a promising strategy for cancer treatment and chemoprevention. Both compounds can induce cell differentiation and apoptosis of neoplastic and preneoplastic cells by means of modulation of gene transcription, yet they act through different but interconnected mechanisms. Vitamin A acts through nuclear receptors that are tightly regulated by histone modifications such as acetylation and DNA methylation. Tributyrin modulates transcription of genes by HDACs inhibition and histone hyperacetylation. This chapter describes how epigenetics mediates the antineoplastic and chemopreventive activity of vitamin A, tributyrin, and their derivatives and how their combination can be used to help overcome current limitations in cancer treatment and prevention. We also show how the mechanisms of action of vitamin A and tributyrin have aided in the development of synthetic and bioengineered compounds like synthetic retinoids and structured lipids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-aza:

5-azacytidine

9cRA:

9-cis retinoic acid

ALA:

α linolenic acid

APL:

Acute promyelocytic leukemia

ATRA:

All-trans retinoic acid

b.w.:

Body weight

BA:

Butyric acid

BFC:

Bioactive food compound

Crm-1:

Chromosomal region maintenance 1

CRP:

Chromatin remodeling complex

DNMT:

DNA methyltransferase

GST-P:

Placental glutathione-S-transferase

H3K18ac:

Histone 3 acetylated in lysine residue 18

H3K27me3:

Histone 3 trimethylated in lysine residue 27

H3K4ac:

Histone 3 acetylated in lysine residue 4

H3K9me3:

Histone 3 trimethylated in lysine residue 9

H4K12ac:

Histone 4 acetylated in lysine residue 12

H4K16ac:

Histone 4 acetylated in lysine residue 16

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

LINE-1:

Long interspersed nucleotide element 1

Mdm2:

Human homologue of the mouse double minute 2

NES:

Nuclear exportation signal

PPAR:

Peroxisomal proliferator activated receptor

RARE:

Retinoic acid response elements

RARα:

Retinoic acid receptor alfa

RARβ2:

Retinoic acid receptor beta isoform 2

RH:

Resistant hepatocyte model

ROL:

Retinol

RXR:

Retinoid X receptors

RXRE:

RXR response elements

TB:

Tributyrin

UBE1L:

Ubiquitin-activating enzyme E1-like

VDR:

Vitamin D receptor

References

  • Ahmad A, Sakr WA, Rahman KM (2012) Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Front Biosci (Ellite Ed) 4:410–425

    Article  Google Scholar 

  • Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin a and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcantara EN, Speckmann EW (1976) Diet, nutrition, and cancer. Am J Clin Nutr 29:1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh F, Bolhassani A, Khavari A et al (2014) Retinoids and their biological effects against cancer. Int Immunopharmacol 18:43–49

    Article  CAS  PubMed  Google Scholar 

  • Andrade FO, Nagamine MK, Conti AD et al (2012) Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin a against proliferation of MCF-7 human breast cancer cells. Braz J Med Biol Res 45:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banudevi S, Swaminathan S, Maheswari KU (2015) Pleiotropic role of dietary phytochemicals in cancer: emerging perspectives for combinational therapy. Nutr Cancer 67:1021–1048

    Article  CAS  PubMed  Google Scholar 

  • Berni Canani R, Di Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 4:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Breitman TR (1994) Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy. Cancer Res 54:3494–3499

    CAS  PubMed  Google Scholar 

  • Chen Z, Wang W, Pan J et al (1999) Combination of all-trans retinoic acid with butyric acid and its prodrugs markedly enhancing differentiation of human acute promyelocytic leukemia NB4 cells. Chin Med J 112:352–355

    CAS  PubMed  Google Scholar 

  • Cheong HS, Lee HC, Park BL et al (2010) Epigenetic modification of retinoic acid-treated human embryonic stem cells. BMB Rep 43:830–835

    Article  CAS  PubMed  Google Scholar 

  • Conley BA, Egorin MJ, Tait N et al (1998) Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin Cancer Res 4:629–634

    CAS  PubMed  Google Scholar 

  • Cordani M, Butera G, Pacchiana R et al (2016) Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochim Biophys Acta 1867:19–28

    Google Scholar 

  • Daniel P, Brazier M, Cerutti I et al (1989) Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clin Chim Acta 181:255–263

    Article  CAS  PubMed  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    Article  CAS  PubMed  Google Scholar 

  • de Conti A, Kuroiwa-Trzmielina J, Horst MA et al (2012) Chemopreventive effects of the dietary histone deacetylase inhibitor tributyrin alone or in combination with vitamin a during the promotion phase of rat hepatocarcinogenesis. J Nutr Biochem 23:860–866

    Article  CAS  PubMed  Google Scholar 

  • de Conti A, Tryndyak V, Koturbash I et al (2013) The chemopreventive activity of the butyric acid prodrug tributyrin in experimental rat hepatocarcinogenesis is associated with p53 acetylation and activation of the p53 apoptotic signaling pathway. Carcinogenesis 34:1900–1906

    Article  CAS  PubMed  Google Scholar 

  • di Masi A, Leboffe L, De Marinis E et al (2015) Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Asp Med 41:1–115

    Article  CAS  Google Scholar 

  • Donohoe DR, Bultman SJ (2012) Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol 227:3169–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe DR, Collins LB, Wali A et al (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48:612–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman MJ, Bauer K, Khanwani S et al (2003) Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother Pharmacol 51:439–444

    CAS  PubMed  Google Scholar 

  • Egorin MJ, Yuan ZM, Sentz DL et al (1999) Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemother Pharmacol 43:445–453

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Guo M, Moreno V et al (2002) Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res 62:5902–5905

    CAS  PubMed  Google Scholar 

  • Farfán M, Villalón MJ, Ortíz ME et al (2013) The effect of interesterification on the bioavailability of fatty acids in structured lipids. Food Chem 139:571–577

    Article  CAS  PubMed  Google Scholar 

  • Fonseca EMAV, Chagas CE, Mazzantini RP et al (2005) All-trans and 9-cis retinoic acids, retinol and beta-carotene chemopreventive activities during the initial phases of hepatocarcinogenesis involve distinct actions on glutathione S-transferase positive preneoplastic lesions remodeling and DNA damage. Carcinogenesis 26:1940–1946

    Article  CAS  Google Scholar 

  • Gilardi F, Desvergne B (2014) RXRs: collegial partners. Subcell Biochem 70:75–102

    Article  CAS  PubMed  Google Scholar 

  • Gori GB (1978) Role of diet and nutrition in cancer cause, prevention and treatment. Bull Cancer 65:115–126

    CAS  PubMed  Google Scholar 

  • Guariento AH, Furtado KS, de Conti A et al (2014) Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis. Int J Cancer 135:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudas LJ (2013) Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol 24:701–705

    Article  CAS  PubMed  Google Scholar 

  • Hansen NJ, Wylie RC, Phipps SM et al (2007) The low-toxicity 9-cis UAB30 novel retinoid down-regulates the DNA methyltransferases and has anti-telomerase activity in human breast cancer cells. Int J Oncol 30:641–650

    CAS  PubMed  Google Scholar 

  • Hayden LJ, Satre MA (2002) Alterations in cellular retinol metabolism contribute to differential retinoid responsiveness in normal human mammary epithelial cells versus breast cancer cells. Breast Cancer Res Treat 72:95–105

    Article  CAS  PubMed  Google Scholar 

  • Heidor R, Ortega JF, de Conti A et al (2012) Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Curr Drug Targets 13:1720–1729

    Article  CAS  PubMed  Google Scholar 

  • Heidor R, de Conti A, Ortega JF et al (2016) The chemopreventive activity of butyrate-containing structured lipids in experimental rat hepatocarcinogenesis. Mol Nutr Food Res 60:420–429

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12:1925–1956

    Article  CAS  PubMed  Google Scholar 

  • Humphreys KJ, Cobiac L, Le Leu RK et al (2013) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 52:459–474

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Zhang Z, Zou D et al (2014) MicroRNA-10a is down-regulated by DNA methylation and functions as a tumor suppressor in gastric cancer cells. PLoS One 9:e88057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SN, Lee E, Lee MK et al (2011) Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma. Drug Deliv 18:143–149

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Wall D, Curran C et al (2015) MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 15(1):345

    Google Scholar 

  • Kim KB, Nam YA, Kim HS et al (2014) α Linolenic acid: nutraceutical, − pharmacological and toxicological evaluation. Food Chem Toxicol 70:163–178

    Article  CAS  PubMed  Google Scholar 

  • Kitareewan S, Pitha-Rowe I, Sekula D et al (2002) UBE1L is a retinoid target that triggers PML/RARalpha degradation and apoptosis in acute promyelocytic leukemia. Proc Natl Acad Sci USA 99:3806–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7:52517–52529

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Periyasamy R, Das S et al (2014) All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol 85:946–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroiwa-Trzmielina J, de Conti A, Scolastici C et al (2009) Chemoprevention of rat hepatocarcinogenesis with histone deacetylase inhibitors: efficacy of tributyrin, a butyric acid prodrug. Int J Cancer 124:2520–2527

    Article  CAS  PubMed  Google Scholar 

  • Leder A, Leder P (1975) Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell 5:319–322

    Article  CAS  PubMed  Google Scholar 

  • Li M, Sun Y, Guan X et al (2014) Advanced progress on the relationship between RA and its receptors and malignant tumors. Crit Rev Oncol Hematol 91:271–282

    Article  PubMed  Google Scholar 

  • Liu Y, Upadhyaya B, Fardin-Kia AR et al (2016) Dietary resistant starch type 4-derived butyrate attenuates nuclear factor-kappa-B1 through modulation of histone H3 trimethylation at lysine 27. Food Funct 7:3772–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo-Coco F, Ammatuna E (2006) The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematology Am Soc Hematol Educ Program 1:156–161

    Article  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  PubMed  Google Scholar 

  • Makishima M, Honma Y (1997) Tretinoin tocoferil as a possible differentiation-inducing agent against myelomonocytic leukemia. Leuk Lymphoma 26:43–48

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850

    Article  CAS  PubMed  Google Scholar 

  • McCollum EV, Davis M (1913) The necessity of certain lipids during growth. J Biol Chem 15:167–175

    CAS  Google Scholar 

  • Michels KB (2005) The role of nutrition in cancer development and prevention. Int J Cancer 114:163–165

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, Kurschel E, Osieka R et al (1987) Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Mongan NP, Gudas LJ (2005) Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′-deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther 4:477–486

    CAS  PubMed  Google Scholar 

  • Moreno FS, S-Wu T, Naves MM et al (2002) Inhibitory effects of beta-carotene and vitamin a during the progression phase of hepatocarcinogenesis involve inhibition of cell proliferation but not alterations in DNA methylation. Nutr Cancer 44:80–88

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Yasumura S, Atarashi Y et al (2004) Sodium butyrate enhances Fas-mediated apoptosis of human hepatoma cells. J Hepatology 40:278–284

    Article  CAS  Google Scholar 

  • Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4:275–292

    Article  CAS  PubMed  Google Scholar 

  • Ortega JF, de Conti A, Tryndyak V et al (2016) Suppressing activity of tributyrin on hepatocarcinogenesis is associated with inhibiting the p53-CRM1 interaction and changing the cellular compartmentalization of p53 protein. Oncotarget 7:24339–24347

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascale RM, Simile MM, Calvisi DF et al (2005) Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 42:1310–1319

    Article  CAS  PubMed  Google Scholar 

  • Perng W, Rozek LS, Mora-Plazas M et al (2012) Micronutrient status and global DNA methylation in school-age children. Epigenetics 7:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad KN, Sinha PK (1976) Effect of sodium butyrate on mammalian cells in culture: a review. In Vitro 12:125–132

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Guo Y, Zhang P et al (2016) Preventive and therapeutic effects of the retinoid X receptor agonist bexarotene on tumors. Curr Drug Metab 17:118–128

    Article  CAS  PubMed  Google Scholar 

  • Raif A, Marshall GM, Bell JL et al (2009) The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Lett 277:82–90

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2014) Health benefits of plant-derived α-linolenic acid. Am J Clin Nutr 100(Suppl 1):443S–448S

    Article  CAS  PubMed  Google Scholar 

  • Rephaeli A, Nordenberg J, Aviram A et al (1994) Butyrate-induced differentiation in leukemic myeloid cells in vitro and in vivo studies. Int J Oncol 4:1387–1391

    CAS  PubMed  Google Scholar 

  • Rowling MJ, McMullen MH, Schalinske KL (2002) Vitamin a and its derivatives induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats. J Nutr 132:365–369

    Article  CAS  PubMed  Google Scholar 

  • Savickiene J, Treigyte G, Borutinskaite VV et al (2012) Antileukemic activity of combined epigenetic agents, DNMT inhibitors zebularine and RG108 with HDAC inhibitors, against promyelocytic leukemia HL-60 cells. Cell Mol Biol Lett 17:501–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk T, Stengel S, Zelent A (2014) Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 111:2039–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlörmann W, Naumann S, Renner C et al (2015) Influence of miRNA-106b and miRNA-135a on butyrate-regulated expression of p21 and cyclin D2 in human colon adenoma cells. Genes Nutr 10:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva EL, Carneiro G, Caetano PA et al (2015) Nanostructured lipid carriers loaded with tributyrin as an alternative to improve anticancer activity of all-trans retinoic acid. Expert Rev Anticancer Ther 15:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurling CC, Suhl JA, Boucher N et al (2008) The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARbeta2 in colon cancer cells. Nutr Cancer 60:692–702

    Article  CAS  PubMed  Google Scholar 

  • Steward WP, Brown K (2013) Cancer chemoprevention: a rapidly evolving field. Br J Cancer 109:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS et al (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, He L, Zhang N et al (2006) Evaluation of tributyrin lipid emulsion with affinity to low-density lipoprotein: pharmacokinetics in adult male Wistar rats and cellular activity on Caco-2 and HepG2 cell lines. J Pharmacol Exp Ther 316:62–70

    Article  CAS  PubMed  Google Scholar 

  • Su J, Zhang N, Ho PC (2008) Evaluation of the pharmacokinetics of all-trans-retinoic acid (ATRA) in Wistar rats after intravenous administration of ATRA loaded into tributyrin submicron emulsion and its cellular activity on Caco-2 and HepG2 cell lines. J Pharm Sci 97:2844–2853

    Google Scholar 

  • Taimi M, Chen ZX, Breitman TR (1998) Potentiation of retinoic acid-induced differentiation of human acute promyelocytic leukemia NB4 cells by butyric acid, tributyrin, and hexamethylene bisacetamide. Oncol Res 10:75–84

    CAS  PubMed  Google Scholar 

  • Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364

    Article  CAS  PubMed  Google Scholar 

  • Trasino SE, Tang XH, Jessurun J et al (2016) Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis. Diabetes Obes Metab 18:142–151

    Article  CAS  PubMed  Google Scholar 

  • Uray IP, Dmitrovsky E, Brown PH (2016) Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol 43:49–64

    Article  CAS  PubMed  Google Scholar 

  • Urvalek A, Laursen KB, Gudas LJ (2014) The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes. Subcell Biochem 70:129–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  • Veal G, Rowbotham S, Boddy A (2007) Pharmacokinetics and pharmacogenetics of 13-cis-retinoic acid in the treatment of neuroblastoma. Therapie 62:91–93

    Article  PubMed  Google Scholar 

  • Vinolo MA, Rodrigues HG, Festuccia WT et al (2012) Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303:E272–E282

    Article  CAS  PubMed  Google Scholar 

  • Wang H (2014) Predicting cancer-related MiRNAs using expression profiles in tumor tissue. Curr Pharm Biotechnol 15:438–444

    Article  CAS  PubMed  Google Scholar 

  • Wang HG, Huang XD, Shen P et al (2013) Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med 31:967–974

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Peng R, Cao J et al (2016) Serum vitamin a status is associated with obesity and the metabolic syndrome among school-age children in Chongqing. China Asia Pac J Clin Nutr 25:563–570

    CAS  PubMed  Google Scholar 

  • Witt O, Schmejkal S, Pekrun A (2000) Tributyrin plus all-trans-retinoic acid efficiently induces fetal hemoglobin expression in human erythroleukemia cells. Am J Hematol 64:319–321

    Article  CAS  PubMed  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington, DC

    Google Scholar 

  • Xiao X, Sidorov IA, Gee J et al (2005) Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol 79:108–117

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Wu B, Chen B et al (2016) Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling. Onco Targets Ther 9:4005–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Guo R, Xu H et al (2011) Retinoic acid and tributyrin induce in-vitro radioiodine uptake and inhibition of cell proliferation in a poorly differentiated follicular thyroid carcinoma. Nucl Med Commun 32:605–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Gao Y, Yu M et al (2015) Retinoic acid induces embryonic stem cell differentiation by altering both encoding RNA and microRNA expression. PLoS One 10:e0132566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Salvador Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Heidor, R., Vargas-Mendez, E., Moreno, F.S. (2019). Histone Deacetylase Inhibitor Tributyrin and Vitamin A in Cancer. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics