Skip to main content

Calcium-Deficient Diets in Pregnancy and Nursing: Epigenetic Change in Three Generations of Offspring

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 113 Accesses

Abstract

Prenatal malnutrition can affect the phenotype of offspring by changing epigenetic regulation. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. We previously reported that feeding a Ca-restricted diet to pregnant rats results in hypomethylation and decreased expression from the 11β-hydroxysteroid dehydrogenase-1 promoter in the liver of offspring at day 21. These findings show that a maternal Ca deficiency during pregnancy can affect the regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. The epigenome is an important target of environmental modification. In addition, we determined the effects of a Ca deficiency during pregnancy and/or lactation on insulin resistance and secretion in at least three generations. Female Wistar rats consumed either a Ca-deficient or control diet ad libitum from three weeks preconception to 21 days postparturition and were mated with control males. Randomly selected first (F1)- and second-generation (F2) females were mated with males of each generation on postnatal day 70. F1 and F2 dams were fed with a control diet ad libitum during pregnancy and lactation. On 180 days, homeostasis model assessment of beta cell function (HOMA-β%) gradually decreased in F1 through F3 and that in F2 and F3 males and females was significantly lower than control. These findings indicated that maternal Ca restriction during pregnancy and/or lactation influences insulin secretion in three generations of offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca:

Calcium

F1:

First generation

F2:

Second generation

F3:

Third generation

GR:

Glucocorticoid receptor

HOMA-IR:

Homeostasis model assessment of insulin resistance

HOMA-β%:

Homeostasis model assessment of beta cell function

11β-HSD1:

11β-hydroxysteroid dehydrogenase-1

11β-HSD2:

11β-hydroxysteroid dehydrogenase-2

Hsd11b1 :

11β-hydroxysteroid dehydrogenase-1 gene

Hsd11b2 :

11β-hydroxysteroid dehydrogenase-2 gene

Nr3c1 :

glucocorticoid receptor gene

PEPCK:

phosphoenolpyruvate carboxykinase

Pck1 :

phosphoenolpyruvate carboxykinase gene

PPARα:

peroxisome proliferator-activated receptor α

Ppara :

rat peroxisome proliferator-activated receptor α gene

References

  • Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis D (2009) The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–2701

    Article  CAS  Google Scholar 

  • Benyshek DC, Johnston CS, Martin JF (2008) Insulin sensitivity is normalized in the third generation (F3) offspring of developmentally programmed insulin resistant (F2) rats fed an energy-restricted diet. Nutr Metab (Lond) 5:26

    Article  Google Scholar 

  • Chaplin A, Palou A, Serra F (2017) Methylation analysis in fatty-acid related genes reveals their plasticity associated with conjugated acid and calcium supplementation in adult mice. Eur J Nutr 56:879–891

    Google Scholar 

  • Cooper MS, Stewart PM (2009) 11β-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab 94:4645–4654

    Article  CAS  Google Scholar 

  • Dearden L, Balthasar N (2014) Sexual dimorphism in offspring glucose-sensitive hypothalamic Gene expression and physiological responses to maternal high-fat diet feeding. Endocrinology 155:2144–2154

    Article  Google Scholar 

  • Desai M, Byrne CD, Zhang J, Petry CJ, Lucas A, Hales CN (1997) Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am J Phys 272:G1083–G1090

    CAS  Google Scholar 

  • Draper N, Stewart PM (2005) 11β-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 186:251–271

    Article  CAS  Google Scholar 

  • Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA (2009) Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 23:2438–2449

    Article  CAS  Google Scholar 

  • Geer EB, Shen W (2009) Gender differences in insulin resistance, body composition, and energy balance. Gend Med 6(Suppl 1):60–75

    Article  Google Scholar 

  • Gong L, Pan YX, Chen H (2010) Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 5:619–626

    Article  CAS  Google Scholar 

  • Hall E, Volkov P, Tasnim Dayeh T, Esguerra JLS, Salö S et al (2014) Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 15:522

    Article  Google Scholar 

  • Hamo E, Cottrell EC, Keevil BG, DeSchoolmeester J, Bohlooly- YM et al (2013) 11-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice. Endocrinology 154:3599–3609

    Article  Google Scholar 

  • Hanson RW, Patel YM (1994) Phosphoenolpyruvate carboxykinase (GTP) gene. Adv Enzymol Relat Areas Mol Biol 69:203–281

    CAS  PubMed  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  Google Scholar 

  • Hemanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M et al (2005) 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202:517–527

    Article  Google Scholar 

  • Hermans MP, Levy JC, Morris RJ, Turner RC (1999) Comparison of tests of beta-cell function across a range of glucose tolerance from normal to diabetes. Diabetes 48:1779–1786

    Article  CAS  Google Scholar 

  • Kaelin Jr WG, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  Google Scholar 

  • Lax ER, Ghraf R, Schriefers H (1978) The hormonal regulation of hepatic microsomal 11beta-hydroxtsteroid dehydrogenase activity in the rat. Acta Endocrinol 89:352–357

    Article  CAS  Google Scholar 

  • Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100:278–282

    Article  CAS  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    Article  CAS  Google Scholar 

  • Lindsay RS, Wake DJ, Nair S, Bunt J, Livingstone DE et al (2003) Subcutaneous adipose 11 beta-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in pima Indians and Caucasians. J Clin Endocrinol Metab 88:2738–2744

    Article  CAS  Google Scholar 

  • Liu S, Song Y, Ford ES, Manson JE, Buring JE, Ridker PM (2005) Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 28:2926–2932

    Article  CAS  Google Scholar 

  • Liu Y, Nakagawa Y, Wang Y, Li R, Li X et al (2003) Leptin activation of corticosterone production in hepatocytes may contribute to the reversal of obesity and hyperglycemia in leptin-deficient ob/ob mice. Diabetes 52:1409–1416

    Article  CAS  Google Scholar 

  • Livingstone DE, Jones GC, Smith K, Jamieson PM, Andrew R et al (2001) Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 141:560–563

    Article  Google Scholar 

  • Macotela Y, Boucher J, Tran TT, Kahn CR (2009) Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58:803–812

    Article  CAS  Google Scholar 

  • Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, Shinyama H, Sharp MG, Fleming S, Mullins JJ, Seckl JR, Flier JS (2003) Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 112:83–90

    Article  CAS  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  Google Scholar 

  • Morgan SA, McCabe EL, Gathercole LL, Hassan-Smith ZK, Larner DP et al (2014) 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci USA 111:E2482–E2491

    Google Scholar 

  • Morton NM, Seckl JR (2008) 11beta-hydroxysteroid dehydrogenase type 1 and obesity. Front Horm Res 36:146–164

    Article  CAS  Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA et al (2010) Chronic high-fat diet in fathers programs ß-cell dysfunction in female rat offspring. Nature 467:963–966

    Article  CAS  Google Scholar 

  • Patel MS, Srinivasan M (2011) Metabolic programming in the immediate postnatal life. Ann Nutr Metab 58(Suppl 2):18–28

    Article  CAS  Google Scholar 

  • Paulmyer-Lacrox O, Boullu S, Oliver C, Alessi MC, Grino M (2002) Expression of the mRNA coding for 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 87:2701–2705

    Google Scholar 

  • Pereira MA, Jacobs DRJ, Van Horn L, Slattery ML, Kartashov AI, Ludwig DS (2002) Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA study. JAMA 287:2081–2089

    Article  Google Scholar 

  • Pikilidou MI, Lasaridis AN, Sarafidis PA et al (2009) Insulin sensitivity increase after calcium supplementation and change in intraplatelet calcium and sodium-hydrogen exchange in hypertensive patients with type 2 diabetes. Diabetes Med 26:211–219

    Article  CAS  Google Scholar 

  • Pittas AG, Lau J, FB H, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92:2017–2029

    Article  CAS  Google Scholar 

  • Rask E, Olsson T, Sodenberg S, Andrew R, Livingstone DE et al (2001) Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 86:1418–1421

    Article  CAS  Google Scholar 

  • Schrager S (2005) Dietary calcium intake and obesity. J Am Board Fam Pract 18:205–210

    Article  Google Scholar 

  • Skinner MK (2008) What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 25:2–6

    Article  CAS  Google Scholar 

  • Srinivasan M, Mahmood S, Patel MS (2013) Metabolic programming effects initiated in the suckling period predisposing for adult-onset obesity cannot be reversed by calorie restriction. Am J Physiol Endocrinol Metab 304:E486–E494

    Article  CAS  Google Scholar 

  • Takaya J, Yamanouchi S, Tanabe Y, Kaneko K (2016) A calcium-deficient diet in rat dams during gestation decreases HOMA-β% in 3 generations of offspring. J Nutrigenet Nutrigenomics 9:276–286

    Google Scholar 

  • Takaya J, Yamanouchi S, Kaneko K (2014) A calcium-deficient diet in rat dams during gestation and nursing affects hepatic 11β-hydroxysteroid dehydrogenase-1 expression in the offspring. PLoS One 9:e84125

    Article  Google Scholar 

  • Takaya J, Iharada A, Okihana H, Kaneko K (2013) A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11β-hydroxysteroid dehydrogenase-1 promoter in pup liver. Nutr Res 33:961–970

    Article  CAS  Google Scholar 

  • Takaya J, Iharada A, Okihana H, Kaneko K (2011) Upregulation of hepatic 11β-hydroxysteroid dehydrogenase-1 expression in calcium-deficient rats. Ann Nutr Metab 59:73–78

    Article  CAS  Google Scholar 

  • Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM (2004) 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–866

    Article  CAS  Google Scholar 

  • Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stem MP (1994) Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia 37:624–631

    Article  CAS  Google Scholar 

  • Walker BR (2006) Cortisol—cause and cure for metabolic syndrome? Diabet Med 23:1281–1288

    Article  CAS  Google Scholar 

  • Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495

    Article  Google Scholar 

  • Warner MJ, Ozanne SE (2010) Mechanisms involved in the developmental programming of adulthood disease. Biochem J 427:333–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Takaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takaya, J. (2019). Calcium-Deficient Diets in Pregnancy and Nursing: Epigenetic Change in Three Generations of Offspring. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics