Skip to main content

Sperm Epigenome in Obesity

  • Reference work entry
  • First Online:

Abstract

Male obesity may have intergenerational and even transgenerational effects in mammals. Studies in rodents have revealed alterations in energy metabolism and disease susceptibility in offspring of obese males, pointing to sperm epigenetic modifications as probable causal factors. To date there is a paucity of studies examining obesity-related changes in the sperm epigenome, and the available epidemiological studies are limited. Upon fertilization, modifications to sperm nuclear and cytoplasmic factors, like RNAs, and to sperm chromatin are likely to influence early embryo gene expression. The available data on the sperm epigenome suggest that sperm DNA methylation status and small noncoding RNA expression patterns are susceptible to obesity-associated modifications. Very little information exists on potential diet-induced modification of sperm histones. Currently, the evidence is most convincing for the involvement of sperm RNA species from obese fathers in the modification of embryo development and offspring energy metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CD:

Control diet

DFI:

DNA fragmentation index

DMRs:

Differentially methylated regions

HFD:

High-fat diet

m2G:

N2-methylguanosine

m5C:

5-Methylcytidine

miRNA:

MicroRNA

piRNA:

PIWI-interacting RNA

RRBS:

Reduced-representation bisulfite sequencing

SCSA:

Sperm chromatin structure assay

sncRNA:

Small non-coding RNA

tsRNA:

tRNA-derived small RNA

References

  • Asnicar MA, Smith DP, Yang DD et al (2001) Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142:4394–4400

    Article  CAS  Google Scholar 

  • Bao J, Bedford MT (2016) Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 151:R55–R70

    Article  CAS  Google Scholar 

  • Binder NK, Hannan NJ, Gardner DK (2012a) Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7:e52304

    Article  CAS  Google Scholar 

  • Binder NK, Mitchell M, Gardner DK (2012b) Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reprod Fertil Dev 24:804–812

    Article  CAS  Google Scholar 

  • Binder NK, Sheedy JR, Hannan NJ et al (2015) Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol Hum Reprod 21:424–434

    Article  CAS  Google Scholar 

  • Bromfield JJ (2014) Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet 31:627–636

    Article  Google Scholar 

  • Campbell JM, Lane M, Owens JA et al (2015) Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 31:593–604

    Article  Google Scholar 

  • Carrell DT, Hammoud SS (2010) The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 16:37–47

    Article  CAS  Google Scholar 

  • Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400

    Article  CAS  Google Scholar 

  • Cooper TG (2011) The epididymis, cytoplasmic droplets and male fertility. Asian J Androl 13:130–138

    Article  Google Scholar 

  • Dansranjavin T, Schagdarsurengin U (2016) The rationale of the inevitable, or why is the consideration of repetitive DNA elements indispensable in studies of sperm nucleosomes. Dev Cell 37:13–14

    Article  CAS  Google Scholar 

  • De Castro Barbosa T, Ingerslev LR, Alm PS et al (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–197

    Article  CAS  Google Scholar 

  • D'occhio MJ, Hengstberger KJ, Johnston SD (2007) Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci 101:1–17

    Article  CAS  Google Scholar 

  • Donkin I, Versteyhe S, Ingerslev LR et al (2016) Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 23:369–378

    Article  CAS  Google Scholar 

  • Duale N, Steffensen IL, Andersen J et al (2014) Impaired sperm chromatin integrity in obese mice. Andrology 2:234–243

    Article  CAS  Google Scholar 

  • Erkek S, Hisano M, Liang C-Y et al (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875

    Article  CAS  Google Scholar 

  • Figueroa-Colon R, Arani RB, Goran MI et al (2000) Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. Am J Clin Nutr 71:829–834

    Article  CAS  Google Scholar 

  • Fullston T, Ohlsson Teague EM, Palmer NO et al (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–4243

    Article  CAS  Google Scholar 

  • Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  Google Scholar 

  • Grandjean V, Fourre S, De Abreu DA et al (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5:18193

    Article  CAS  Google Scholar 

  • Gutzkow KB, Duale N, Danielsen T et al (2016) Enhanced susceptibility of obese mice to glycidamide-induced sperm chromatin damage without increased oxidative stress. Andrology 4:1102–1114

    Article  CAS  Google Scholar 

  • Hackett JA, Sengupta R, Zylicz JJ et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448–452

    Article  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    Article  CAS  Google Scholar 

  • Huypens P, Sass S, Wu M et al (2016) Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet 48:497–499

    Article  CAS  Google Scholar 

  • Jodar M, Selvaraju S, Sendler E et al (2013) The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 19:604–624

    Article  CAS  Google Scholar 

  • Kurtz K, Saperas N, Ausio J et al (2009) Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis. J Exp Zool B Mol Dev Evol 312b:149–163

    Article  CAS  Google Scholar 

  • Li N, Shen Q, Hua J (2016) Epigenetic remodeling in male germline development. Stem Cells Int 2016:3152173

    PubMed  PubMed Central  Google Scholar 

  • Lim JM, Wollaston-Hayden EE, Teo CF et al (2014) Quantitative secretome and glycome of primary human adipocytes during insulin resistance. Clin Proteomics 11:20

    Article  Google Scholar 

  • Marques CJ, Joao Pinho M, Carvalho F et al (2011) DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 6:1354–1361

    Article  CAS  Google Scholar 

  • Mitchell M, Bakos HW, Lane M (2011) Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil Steril 95:1349–1353

    Article  Google Scholar 

  • Ng SF, Lin RCY, Laybutt DR et al (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–U103

    Article  CAS  Google Scholar 

  • Nguyen RHN, Wilcox AJ, Skjaerven R et al (2007) Men's body mass index and infertility. Hum Reprod 22:2488–2493

    Article  Google Scholar 

  • OECD (2015), Health at a Glance 2015: OECD Indicators, OECD Publishing, Paris. https://doi.org/10.1787/health_glance-2015-en

  • Palmer NO, Fullston T, Mitchell M et al (2011) SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev 23:929–939

    Article  CAS  Google Scholar 

  • Ramlau-Hansen CH, Thulstrup AM, Nohr EA et al (2007) Subfecundity in overweight and obese couples. Hum Reprod 22:1634–1637

    Article  CAS  Google Scholar 

  • Rousseaux S, Caron C, Govin J et al (2005) Establishment of male-specific epigenetic information. Gene 345:139–153

    Article  CAS  Google Scholar 

  • Royo H, Stadler MB, Peters AH (2016) Alternative computational analysis shows no evidence for nucleosome enrichment at repetitive sequences in mammalian spermatozoa. Dev Cell 37:98–104

    Article  CAS  Google Scholar 

  • Sarkar A, Volff JN, Vaury C (2016) piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation? FASEB J 31(2):436-446

    Google Scholar 

  • Schagdarsurengin U, Steger K (2016) Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol 13:584–595

    Article  CAS  Google Scholar 

  • Sharma U, Conine CC, Shea JM et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    Article  CAS  Google Scholar 

  • Siklenka K, Erkek S, Godmann M et al (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350:aab2006

    Article  Google Scholar 

  • Simon L, Castillo J, Oliva R et al (2011) Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 23:724–734

    Article  CAS  Google Scholar 

  • Simon L, Liu L, Murphy K et al (2014) Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 29:904–917

    Article  CAS  Google Scholar 

  • Soubry A, Guo L, Huang Z et al (2016) Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics 8:51

    Article  Google Scholar 

  • Terashima M, Barbour S, Ren J et al (2015) Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10:861–871

    Article  Google Scholar 

  • van der Heijden GW, Ramos L, Baart EB, et al. (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Bio 8:34 

    Google Scholar 

  • Vicentic A, Jones DC (2007) The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J Pharmacol Exp Ther 320:499–506

    Google Scholar 

  • Wang L, Zhang J, Duan J et al (2014) Programming and inheritance of parental DNA methylomes in mammals. Cell 157:979–991

    Article  CAS  Google Scholar 

  • Whitaker RC, Deeks CM, Baughcum AE et al (2000) The relationship of childhood adiposity to parent body mass index and eating behavior. Obes Res 8:234–240

    Article  CAS  Google Scholar 

  • Youngson NA, Lecomte V, Maloney CA et al (2016) Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring. Asian J Androl 18:930-936

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte Lindeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duale, N., Witczak, O., Brunborg, G., Haugen, T.B., Lindeman, B. (2019). Sperm Epigenome in Obesity. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics