Skip to main content

The Epigenetically Modulated Circadian System: Implications for Nutrition and Health. Nutritional Modulation of the Circadian Epigenome

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 220 Accesses

Abstract

The biological clock is a complex puzzle of molecular pieces that must work coordinately to ensure a proper cellular function. The circadian epigenome is the most recently discovered set of clock molecular pieces. It involves DNA methylation, histone acetylation/deacetylation, histone methylation/demethylation, and noncoding RNAs. These epigenomic modifications related to the circadian system add complexity to this process. In this regard, the circadian system is similar to the solar system with the CLOCK/BMAL1 heterodimer in the center and the other molecular and epigenomic components of the circadian system orbiting around it. The particular characteristic of the epigenome is that it is modifiable and environmental factors can affect it. Diet is one of the most important environmental factors affecting human health. We must bear in mind that diet is the only environmental factor to which we are exposed along our lives several times every day. We are even exposed to the diet of our mothers before birth. This is important because mother feeding animal studies have shown that mother diet affect circadian-related histone modifications. Diet also modifies circadian-related microRNAs. Here, we described each level of the circadian epigenome and give an insight of how diet modifies each one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCGs:

Clock-controlled genes

CVD:

Cardiovascular disease

H3:

Histone 3

HFD:

High-fat diet

KO:

Knockout

lincRNAs:

Large intergenic noncoding RNAs

Lys:

Lysine

MetS:

Metabolic syndrome

PWS:

Prader-Willi syndrome

SCN:

Suprachiasmatic nucleus

snoRNAs:

Small nucleolar RNAs

T2DM:

Type 2 diabetes mellitus

References

  • Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, Mcknight R, Lane RH (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102

    Article  CAS  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  Google Scholar 

  • Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17:377–382

    Article  CAS  Google Scholar 

  • Barres R, Zierath JR (2016) The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol 12:441–451

    Article  CAS  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  Google Scholar 

  • Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC (2011) CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 7:e1002166

    Article  CAS  Google Scholar 

  • Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA (2014) Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 15:23448–23500

    Article  Google Scholar 

  • Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, Shankar K (2014) High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9:e84209

    Article  Google Scholar 

  • Coon SL, Munson PJ, Cherukuri PF, Sugden D, Rath MF, Moller M, Clokie SJ, Fu C, Olanich ME, Rangel Z, Werner T, Mullikin JC, Klein DC (2012) Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci USA 109:13319–13324

    Article  CAS  Google Scholar 

  • Corbalan-Tutau MD, Gomez-Abellan P, Madrid JA, Canteras M, Ordovas JM, Garaulet M (2015) Toward a chronobiological characterization of obesity and metabolic syndrome in clinical practice. Clin Nutr 34:477–483

    Article  CAS  Google Scholar 

  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3:1241–1247

    Article  CAS  Google Scholar 

  • Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE, Habeos IG (2012) Differential expression of micrornas in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 7:e34872

    Article  CAS  Google Scholar 

  • Chen L, Yang G (2015) Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6:71

    PubMed  PubMed Central  Google Scholar 

  • Chen R, D'alessandro M, Lee C (2013) miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 23:1959–1968

    Article  CAS  Google Scholar 

  • Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26:1241–1246

    Article  CAS  Google Scholar 

  • Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  CAS  Google Scholar 

  • Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Mico V, Aranda JF, Garcia B, Martinez-Botas J, Davalos A, Fernandez-Hernando C, Ordovas JM (2015) Dietary lipids modulate the expression of miR-107, an miRNA that regulates the circadian system. Mol Nutr Food Res 59:552–565

    Article  CAS  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  CAS  Google Scholar 

  • Du NH, Arpat AB, De Matos M, Gatfield D (2014) MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. Elife 3:e02510

    Article  Google Scholar 

  • Duong HA, Weitz CJ (2014) Temporal orchestration of repressive chromatin modifiers by circadian clock period complexes. Nat Struct Mol Biol 21:126–132

    Article  CAS  Google Scholar 

  • Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182

    Article  CAS  Google Scholar 

  • Etchegaray JP, Yang X, Debruyne JP, Peters AH, Weaver DR, Jenuwein T, Reppert SM (2006) The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281:21209–21215

    Article  CAS  Google Scholar 

  • Feillet C, Van Der Horst GT, Levi F, Rand DA, Delaunay F (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol 6:96

    Article  Google Scholar 

  • Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33:178–185

    Article  CAS  Google Scholar 

  • Ferrell JM, Chiang JY (2015) Circadian rhythms in liver metabolism and disease. Acta Pharm Sin B 5:113–122

    Article  Google Scholar 

  • Figueredo Dde S, Gitai DL, Andrade TG (2015) Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis 54:364–368

    Article  Google Scholar 

  • Garaulet M, Ordovás JM (2012) Chronobiology and obesity. Springer, New York/Heidelberg/Dordrecht/London

    Google Scholar 

  • Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D (2016) The role of bioactive dietary components in modulating miRNA expression in colorectal cancer. Nutrients 8(10). pii. E590

    Google Scholar 

  • Gil-Zamorano J, Martin R, Daimiel L, Richardson K, Giordano E, Nicod N, Garcia-Carrasco B, Soares SM, Iglesias-Gutierrez E, Lasuncion MA, Sala-Vila A, Ros E, Ordovas JM, Visioli F, Davalos A (2014) Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism. J Nutr 144:575–585

    Article  CAS  Google Scholar 

  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  CAS  Google Scholar 

  • Joska TM, Zaman R, Belden WJ (2014) Regulated DNA methylation and the circadian clock: implications in cancer. Biology (Basel) 3:560–577

    CAS  Google Scholar 

  • Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421

    Article  CAS  Google Scholar 

  • Lee KH, Kim SH, Lee HR, Kim W, Kim DY, Shin JC, Yoo SH, Kim KT (2013) MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24:2248–2255

    Article  CAS  Google Scholar 

  • Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, Schneider JA, Myers AJ, Bennett DA, De Jager PL (2014) 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet 10:e1004792

    Article  Google Scholar 

  • Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA, Bressan J, Martinez JA (2016) Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. Nutrition 32:48–55

    Article  CAS  Google Scholar 

  • Masri S, Sassone-Corsi P (2010) Plasticity and specificity of the circadian epigenome. Nat Neurosci 13:1324–1329

    Article  CAS  Google Scholar 

  • Mico V, Diez-Ricote L, Daimiel L (2016) Nutrigenetics and nutrimiromics of the circadian system: the time for human health. Int J Mol Sci 17

    Google Scholar 

  • Miki T, Matsumoto T, Zhao Z, Lee CC (2013) p53 regulates period2 expression and the circadian clock. Nat Commun 4:2444

    Article  Google Scholar 

  • Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy MF, Chambon P (2015) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci USA 112:E6691–E6698

    Article  CAS  Google Scholar 

  • Na YJ, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH (2009) Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med 41:638–647

    Article  CAS  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  Google Scholar 

  • Nam HJ, Boo K, Kim D, Han DH, Choe HK, Kim CR, Sun W, Kim H, Kim K, Lee H, Metzger E, Schuele R, Yoo SH, Takahashi JS, Cho S, Son GH, Baek SH (2014) Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting. Mol Cell 53:791–805

    Article  CAS  Google Scholar 

  • Oosterman JE, Kalsbeek A, La Fleur SE, Belsham DD (2015) Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 308:R337–R350

    Article  CAS  Google Scholar 

  • Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, Alice Yamada N, Yasui DH, Lasalle JM (2013) A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet 22:4318–4328

    Article  CAS  Google Scholar 

  • Powell WT, Lasalle JM (2015) Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet 24:R1–R9

    Article  CAS  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  CAS  Google Scholar 

  • Saud SM, Li W, Morris NL, Matter MS, Colburn NH, Kim YS, Young MR (2014) Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis 35:2778–2786

    Article  CAS  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24:875–892

    Article  CAS  Google Scholar 

  • Shende VR, Goldrick MM, Ramani S, Earnest DJ (2011) Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One 6:e22586

    Article  CAS  Google Scholar 

  • Shende VR, Kim SM, Neuendorff N, Earnest DJ (2014) MicroRNAs function as cis-and trans-acting modulators of peripheral circadian clocks. FEBS Lett 588:3015–3022

    Article  CAS  Google Scholar 

  • Shih MC, Yeh KT, Tang KP, Chen JC, Chang JG (2006) Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol Carcinog 45:732–740

    Article  CAS  Google Scholar 

  • Singh NP, Singh UP, Rouse M, Zhang J, Chatterjee S, Nagarkatti PS, Nagarkatti M (2016) Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of microRNA. J Immunol 196:1108–1122

    Article  CAS  Google Scholar 

  • Suelves M, Carrio E, Nunez-Alvarez Y, Peinado MA (2016) DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics. 15(6):443–453

    Google Scholar 

  • Suter M, Bocock P, Showalter L, Hu M, Shope C, Mcknight R, Grove K, Lane R, Aagaard-Tillery K (2011) Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. Faseb J 25:714–726

    Article  CAS  Google Scholar 

  • Suter MA, Takahashi D, Grove KL, Aagaard KM (2013) Postweaning exposure to a high-fat diet is associated with alterations to the hepatic histone code in Japanese macaques. Pediatr Res 74:252–258

    Article  CAS  Google Scholar 

  • Tan X, Zhang P, Zhou L, Yin B, Pan H, Peng X (2012) Clock-controlled mir-142-3p can target its activator, Bmal1. BMC Mol Biol 13:27

    Article  CAS  Google Scholar 

  • Taniguchi H, Fernandez AF, Setien F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res 69:8447–8454

    Article  CAS  Google Scholar 

  • Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16:833–845

    Article  CAS  Google Scholar 

  • Wang XC, Zhan XR, Li XY, Yu JJ, Liu XM (2014) MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J Gastroenterol 20:17914–17923

    Article  CAS  Google Scholar 

  • Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z, Zhang J (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10:e0118101

    Article  Google Scholar 

  • Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D (2007) MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282:25053–25066

    Article  CAS  Google Scholar 

  • Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HY, Liu TC, Hsiao HH, Liu YC, Lin SF (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97:1298–1307

    Article  CAS  Google Scholar 

  • Yang WM, Jeong HJ, Park SY, Lee W (2014) Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett 588:2170–2176

    Article  CAS  Google Scholar 

  • Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M (2012) Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 93:555–562

    Article  CAS  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111:16219–16224

    Article  CAS  Google Scholar 

  • Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, Hansen J (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int 28:852–861

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Servier Medical Art images have been used in the figures included in this manuscript. These images can be used under Creative Commons Attribution 3.0 Unported License. http://www.servier.com/Powerpoint-image-bank

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Daimiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Daimiel, L. (2019). The Epigenetically Modulated Circadian System: Implications for Nutrition and Health. Nutritional Modulation of the Circadian Epigenome. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics