Skip to main content

Vitamin C and DNA Demethylation in Regulatory T Cells

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

For the immune homeostasis, regulation of effector T cells is indispensable. This is performed by a distinct subclass of CD4+ T cell called “regulatory T cells” (Tregs). The Tregs express the canonical transcription factor called Forkhead box P3 (Foxp3) throughout their life span for their proper development and suppressive function, and the expression of Foxp3 is regarded as a reliable marker of Tregs. Tregs can be generated in the thymus, peripheral tissues, and even in vitro. Thus, Treg populations are divided into three groups. The first one is the Tregs generated in the thymus (thymic Treg, tTreg) and occupies the major fraction of the total Treg population in vivo. The second one is the minor fraction generated in periphery from naïve CD4+ T cells, when they meet cognate antigen under tolerogenic conditions (peripheral Treg, pTreg). Tregs can also be generated in vitro upon TCR activation in the presence of TGF-β (induced Treg, iTreg). Although all three Treg populations have suppressive activity in common, each population shows distinct genetic and epigenetic features. For instance, in Foxp3 gene there is a unique evolutionarily conserved intronic region with several CpG motifs, which is called CNS2 (conserved non-coding sequence 2). The CpG motifs in CNS2 are fully methylated in almost all Foxp3 T cells including CD4 single positive thymocytes (tTreg precursors), naïve CD4+ T cells (pTreg and iTreg precursors) and CD8+ T cells, and some Foxp3+ T cells such as iTregs. In contrast, they are fully demethylated in Tregs generated in vivo (tTregs and pTregs). This dichotomic pattern seen in CNS2 (de-)methylation has attracted researchers’ attention. In this chapter, we are going to discuss the underlying mechanisms of CNS2 demethylation in various types of Tregs and how vitamin C contributes to this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

CNS2:

Conserved non-coding sequence 2

Dnmt:

DNA methyl transferase

Foxp3:

Forkhead box P3

IL:

Interleukin

iTreg:

Induced Treg

pTreg:

Peripheral Treg

SVCT:

Sodium-dependent vitamin C transporter

Tet:

Ten-eleven-translocation

TGF-β:

Transforming growth factor-β

Treg:

Regulatory T

tTreg:

Thymic Treg

References

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  Google Scholar 

  • Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A et al (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226

    Article  CAS  Google Scholar 

  • Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    Article  CAS  Google Scholar 

  • d’Hennezel E, Ben-Shoshan M, Ochs HD, Torgerson TR, Russell LJ, Lejtenyi C, Noya FJ, Jabado N, Mazer B, Piccirillo CA (2009) FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med 361:1710–1713

    Article  Google Scholar 

  • Dickson KM, Gustafson CB, Young JI, Zuchner S, Wang G (2013) Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate. Biochem Biophys Res Commun 439:522–527

    Article  CAS  Google Scholar 

  • Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, Takahashi H, Sun HW, Kanno Y, Powrie F et al (2010) Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:605–615

    Article  CAS  Google Scholar 

  • Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY (2014) Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158:749–763

    Article  CAS  Google Scholar 

  • Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C (2010) Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc Natl Acad Sci USA 107:5919–5924

    Article  CAS  Google Scholar 

  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38

    Article  Google Scholar 

  • Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124

    Article  CAS  Google Scholar 

  • Hori S (2011) Regulatory T cell plasticity: beyond the controversies. Trends Immunol 32:295–300

    Article  CAS  Google Scholar 

  • Huehn J, Beyer M (2015) Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin Immunol 27:10–18

    Article  CAS  Google Scholar 

  • Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89

    Article  CAS  Google Scholar 

  • Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, Ndiaye-Lobry D, Deng Y, Zou Y, Zheng P et al (2015) The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42:613–626

    Article  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor ROR gammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  Google Scholar 

  • Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    Article  CAS  Google Scholar 

  • Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    Article  CAS  Google Scholar 

  • Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    Article  CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  Google Scholar 

  • Kuiper C, Vissers MC (2014) Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 4:359

    PubMed  PubMed Central  Google Scholar 

  • Li X, Liang Y, LeBlanc M, Benner C, Zheng Y (2014) Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158:734–748

    Article  CAS  Google Scholar 

  • Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  Google Scholar 

  • May JM (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 164:1793–1801

    Article  CAS  Google Scholar 

  • Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828

    Article  CAS  Google Scholar 

  • Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36:262–275

    Google Scholar 

  • Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37:785–799

    Article  CAS  Google Scholar 

  • Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356

    Article  CAS  Google Scholar 

  • Patel DD, Kuchroo VK (2015) Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43:1040–1051

    Article  CAS  Google Scholar 

  • Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663

    Article  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  Google Scholar 

  • Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329:1667–1671

    Article  CAS  Google Scholar 

  • Sakaguchi S, Powrie F (2007) Emerging challenges in regulatory T cell function and biology. Science 317:627–629

    Article  CAS  Google Scholar 

  • Sasidharan Nair V, Song MH, Oh KI (2016) Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 196:2119–2131

    Article  CAS  Google Scholar 

  • Song MH, Nair VS, Oh KI (2016) Vitamin C enhances the expression of IL17 in a Jmjd2-dependent manner. BMB Rep 50:49–54

    Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

  • Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Duber S, Geffers R, Giehr P et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190:3180–3188

    Article  CAS  Google Scholar 

  • Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J (2015a) Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 43:1537–1548

    Article  CAS  Google Scholar 

  • Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y et al (2015b) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–263

    Article  CAS  Google Scholar 

  • Young JI, Zuchner S, Wang G (2015) Regulation of the epigenome by vitamin C. Annu Rev Nutr 35:545–564

    Article  CAS  Google Scholar 

  • Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, Lio CW, Li X, Huang Y, Vijayanand P et al (2016) Control of Foxp3 stability through modulation of TET activity. J Exp Med 213:377–397

    Article  CAS  Google Scholar 

  • Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

    Article  CAS  Google Scholar 

  • Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon Ik Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nair, V.S., Oh, K.I. (2019). Vitamin C and DNA Demethylation in Regulatory T Cells. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics