Skip to main content

Epigenetic Programming of Water Drinking and Sodium Intake

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Water is the main element of the human body, representing about 70% of our body mass. This water is distributed inside (intracellular fluid) and outside (extracellular fluid) all body cells. In the extracellular fluid, the main osmotically active solute is sodium. Thus, the volume and osmolality of the extracellular and, consecutively, intracellular fluid is finely controlled by the balance of water and sodium in the human body. There are several neuroendocrine systems that maintain this balance by controlling the amount of water and sodium that we intake and excrete via the kidneys. In order to ensure that we intake the correct amount of water and sodium when we need these elements, the evolutionary process has selected two specific innate appetites for each one of these elements, called thirst and sodium appetite, respectively. Over the past 50 years, there have been several evidences demonstrating that these two sensations that lead us to drink water and intake sodium salts can be epigenetically programmed by perinatal events. Sodium and fluid losses due to exercise-induced dehydration, hemorrhage, vomit, or diuretic therapy during the perinatal period increase sodium appetite in adulthood. An excess of sodium intake during the perinatal period is related to a decrease of thirst sensation and water intake in the offspring when adult. Undernutrition during pregnancy or neonatal undernutrition is also related to an increase in sodium appetite in adulthood; however, the effects of undernutrition on water intake have not yet been fully clarified in the literature. There are several neuroendocrine systems that are responsible for the thirst and sodium appetite control, such as: the renin-angiotensin, atrial natriuretic peptide, and neurohypophyseal systems. Changes in the pattern of methylation of these three neuroendocrine systems were recently identified in several experimental and clinical models, suggesting that these systems may be the key for the epigenetic control of thirst and sodium appetite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Antidiuretic hormone

ANG II:

Angiotensin II

ANP:

Atrial natriuretic peptide

AT1:

Angiotensin II type one receptor

AVP:

Arginine vasopressin

ENaC:

Epithelial sodium channel

PVN:

Paraventricular nucleus

RAAS:

Renin-angiotensin-aldosterone system

SON:

Supraoptic nucleus

References

  • Alwasel SH, Ashton N (2009) Prenatal programming of renal sodium handling in the rat. Clin Sci 117:75–84

    Article  CAS  PubMed  Google Scholar 

  • Alwasel SH, Barker DJ, Ashton N (2012) Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat. Clin Sci 122:281–288

    Article  PubMed  Google Scholar 

  • Argüelles J, Brime JI, López-Sela P et al (2000) Adult offspring long-term effects of high salt and water intake during pregnancy. Horm Behav 37:156–162

    Article  PubMed  Google Scholar 

  • Auger CJ, Coss D, Auger AP et al (2011) Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc Natl Acad Sci USA 108: 4242–4247

    Article  PubMed  Google Scholar 

  • Bare JK (1949) The specific hunger for sodium chloride in normal and adrenalectomized white rats. J Comp Physiol Psychol 42:242–253

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Eriksson JG, Forsén T et al (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 3:1235–1239

    Article  Google Scholar 

  • Beauchamp GK, Moran M (1984) Acceptance of sweet and salty taste in 2-year-oldchildren. Appetite 5:291–305

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp GK, Cowart BJ, Moran M (1986) Developmental changes in salt acceptability in human infants. Dev Psychobiol 19:17–25

    Article  CAS  PubMed  Google Scholar 

  • Bibeau K, Otis M, St-Louis J et al (2011) Differential responses to salt supplementation in adult male and female rat adrenal glands following intrauterine growth restriction. J Endocrinol 209:85–94

    Article  CAS  PubMed  Google Scholar 

  • Birch LL (1999) Development of food preferences. Annu Rev Nutr 19:41–62

    Article  CAS  PubMed  Google Scholar 

  • Birch LL, Davison KK (2001) Family environmental factors influencing the developing behavioral controls of food intake and childhood overweight. Pediatr Clin N Am 48:893–907

    Article  CAS  Google Scholar 

  • Bishara R, Dunn MS, Merko SE et al (2008) Nutrient composition of hind-milk produced by mothers of very low birth weight infants born at less than 28 weeks’ gestation. J Hum Lact 24:159–167

    Article  PubMed  Google Scholar 

  • Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brot MD, De Vries GJ, Dorsa DM (1993) Local implants of testosterone metabolites regulate vasopressin mRNA in sexually dimorphic nuclei of the rat brain. Peptides 14:933–940

    Article  CAS  PubMed  Google Scholar 

  • Chadwick MA, Vercoe PE, Williams IH et al (2009) Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 97:437–445

    Article  CAS  PubMed  Google Scholar 

  • Chow SY, Sakai RR, Witcher JA et al (1992) Sex and sodium intake in the rat. Behav Neurosci 106:172–180

    Article  CAS  PubMed  Google Scholar 

  • Coelho MS, Passadore MD, Gasparetti AL et al (2006) High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis 16:148–155

    Article  CAS  PubMed  Google Scholar 

  • Contreras RJ, Kosten T (1983) Prenatal and early postnatal sodium chloride intake modifies the solution preferences on adult rats. J Nutr 113:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Crook CK (1978) Taste perception in the newborn infant. Infant Behav Dev 1:52–69

    Article  Google Scholar 

  • Crystal SR, Bernstein IL (1995) Morning sickness: impact on offspring salt preference. Appetite 25:231–240

    Article  CAS  PubMed  Google Scholar 

  • Crystal SR, Bernstein IL (1998) Infant salt preference and mother’s morning sickness. Appetite 30:297–307

    Article  CAS  PubMed  Google Scholar 

  • Curtis KS, Krause EG, Wong DL et al (2004) Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. Am J Physiol Regul Integr Comp Physiol 286:R1043–R1050

    Article  CAS  PubMed  Google Scholar 

  • Demura M, Demura Y, Takeda Y et al (2015) Dynamic regulation of the angiotensinogen gene by DNA methylation, which is influenced by various stimuli experienced in daily life. Hypertens Res 38:519–527

    Article  CAS  PubMed  Google Scholar 

  • Desor JA, Maller O, Andrews K (1975) Ingestive responses of human newborns to salty, sour, and bitter stimuli. J Comp Physiol Psychol 89:966–970

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Lv J, Mao C et al (2010) High-salt diet during pregnancy and angiotensin-related cardiac changes. J Hypertens 28:1290–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dow-Edwards DL, Trachtman H, Riley EP et al (1989) Arginine vasopressin and body fluid homeostasis in the fetal alcohol exposed rat. Alcohol 6:193–198

    Article  CAS  PubMed  Google Scholar 

  • El-Haddad MA, Desai M, Gayle D et al (2004) In utero development of fetal thirst and appetite: potential for programming. J Soc Gynecol Investig 11:123–130

    Article  CAS  PubMed  Google Scholar 

  • Ellis S, Axt K, Epstein AN (1984) The arousal of ingestive behaviours by chemical injection into the brain of the suckling rat. J Neurosci 4:945–955

    Article  CAS  PubMed  Google Scholar 

  • Farbman AI (1965) Electron microscope study of the developing taste bud in rat fungiform papilla. Dev Biol 11:110–135

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SA, Delclos KB, Newbold RR et al (2003) Dietary ethinyl estradiol exposure during development causes increased voluntary sodium intake and mild maternal and offspring toxicity in rats. Neurotoxicol Teratol 25:491–501

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SA, Delclos KB, Newbold RR et al (2009) Few effects of multi-generational dietary exposure to genistein or nonylphenol on sodium solution intake in male and female Sprague–Dawley rats. Neurotoxicol Teratol 31:143–148

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    Article  CAS  PubMed  Google Scholar 

  • Frieling H, Bleich S, Otten J et al (2008) Epigenetic downregulation of atrial natriuretic peptide but not vasopressin mRNA expression in females with eating disorders is related to impulsivity. Neuropsychopharmacology 33:2605–2609

    Article  CAS  PubMed  Google Scholar 

  • Galaverna O, Nicolaïdis S, Yao SZ et al (1995) Endocrine consequences of prenatal sodium depletion prepare rats for high need-free NaCl intake in adulthood. Am J Physiol Regul Integr Comp Physiol 269:R578–R583

    Article  CAS  Google Scholar 

  • Gottlieb G (1971) Ontogenesis of sensory function in birds and mammals. In: Tobach E, Aronson LR, Shaw E (eds) The biopsychology of development, 1st edn. Academic, New York, pp 67–128

    Google Scholar 

  • Greenwood M, Bordieri L, Greenwood MP et al (2014) Transcription factor CREB3L1 regulates vasopressin gene expression in the rat hypothalamus. J Neurosci 34:3810–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood MP, Mecawi AS, Hoe SZ et al (2015) A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 308:R559–R568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood MP, Greenwood M, Gillard BT et al (2016) Epigenetic control of the vasopressin promoter explains physiological ability to regulate vasopressin transcription in dehydration and salt loading states in the rat. J Neuroendocrinol 28. https://doi.org/10.1111/jne.12371

  • Grobe JL, Rahmouni K (2012) The adipose/circulating renin-angiotensin system cross-talk enters a new dimension. Hypertension 60:1389–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B (1975) Changing composition of human milk and early development of an appetite control. Lancet 1:779–781

    Article  CAS  PubMed  Google Scholar 

  • Hall WG (1985) What we know and don’t know about the development of independent ingestion in rats. Appetite 6:333–356

    Article  CAS  PubMed  Google Scholar 

  • Hall WG (1989) Neural systems for early independent ingestion: regional metabolic changes during ingestive responding and dehydration. Behav Neurosci 103:386–411

    Article  CAS  PubMed  Google Scholar 

  • Hall WG, Arnold HM, Myers KP (2000) The acquisition of an appetite. Psychol Sci 11:101–105

    Article  CAS  PubMed  Google Scholar 

  • Hamm LL, Feng Z, Hering-Smith KS (2010) Regulation of sodium transport by ENaC in the kidney. Curr Opin Nephrol Hypertens 19:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris G, Thomas A, Booth DA (1990) Development of salt taste in infancy. Dev Psychol 26:534–538

    Article  Google Scholar 

  • Harshaw C (2008) Alimentary epigenetics: a developmental psychobiological systems view of the perception of hunger, thirst and satiety. Dev Rev 28:541–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatton GI (1997) Function-related plasticity in hypothalamus. Annu Rev Neurosci 20:375–397

    Article  CAS  PubMed  Google Scholar 

  • Hill DL, Almli CR (1980) Ontogeny of chorda tympani nerve responses to gustatory stimuli in the rat. Brain Res 197:27–38

    Article  CAS  PubMed  Google Scholar 

  • Hillemacher T, Frieling H, Luber K et al (2009) Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal. Psychoneuroendocrinology 34:555–560

    Article  CAS  PubMed  Google Scholar 

  • Hoppe CC, Evans RG, Moritz KM et al (2007) Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. Am J Physiol Regul Integr Comp Physiol 292:462–469

    Article  CAS  Google Scholar 

  • Hui P, Rui C, Liu Y et al (2009) Remodeled salt appetite in rat offspring by perinatal exposure to nicotine. Appetite 52:492–497

    Article  PubMed  Google Scholar 

  • Iwasaki Y, Oiso Y, Saito H et al (1997) Positive and negative regulation of the rat vasopressin gene promoter. Endocrinology 138:5266–5274

    Article  CAS  PubMed  Google Scholar 

  • Johnson AK (2007) The sensory psychobiology of thirst and salt appetite. Med Sci Sports Exerc 39:1388–1400

    Article  PubMed  Google Scholar 

  • Johnson AK, Thunhorst RL (1997) The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol 18:292–353

    Article  CAS  PubMed  Google Scholar 

  • Kochli A, Tenenbaum-Rakover Y, Leshem M (2005) Increased salt appetite in patients with congenital adrenal hyperplasia 21-hydroxylase deficiency. Am J Physiol Regul Integr Comp Physiol 288:R1673–R1681

    Article  CAS  PubMed  Google Scholar 

  • Kone BC (2013) Epigenetics and the control of the collecting duct epithelial sodium channel. Semin Nephrol 33:383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kral TV, Rauh EM (2010) Eating behaviors of children in the context of their family environment. Physiol Behav 100:567–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krecek J (1978) Effect of ovarectomy of females and oestrogen administration to males during the neonatal critical period on salt intake in adulthood in rats. Physiol Bohemoslov 27:1–5

    CAS  PubMed  Google Scholar 

  • Langley-Evans SC, Jackson AA (1996) Rats with hypertension induced by in utero exposure to maternal low-protein diets fail to increase blood pressure in response to a high salt intake. Ann Nutr Metab 40:1–9

    Article  CAS  PubMed  Google Scholar 

  • Leshem M (1998) Salt preference in adolescence is predicted by common prenatal and infantile mineralofluid loss. Physiol Behav 63:699–704

    Article  CAS  PubMed  Google Scholar 

  • Leshem M (2009) Biobehavior of the human love of salt. Neurosci Biobehav Rev 33:1–17

    Article  CAS  PubMed  Google Scholar 

  • Leshem M, Epstein AN (1988) Thirst-induced anorexias and the ontogeny of thirst in the rat. Dev Psychobiol 21:651–662

    Article  CAS  PubMed  Google Scholar 

  • Leshem M, Del Canho S, Epstein AN (1994) Intracerebroventricular injection of renin in the neonatal rat reveals a precocious sodium appetite that is dissociated from renin-aroused thirst. Dev Psychobiol 27:185–193

    Article  CAS  PubMed  Google Scholar 

  • Leshem M, Maroun M, Del Canho S (1996) Sodium depletion and maternal separation in the suckling rat increase its salt intake when adult. Physiol Behav 59:199–204

    Article  CAS  PubMed  Google Scholar 

  • Leshem M, Boggan B, Epstein AN (1988) The ontogeny of drinking evoked by activation of brain angiotensin in the rat pup. Dev Psychobiol 21:63–75

    Article  CAS  PubMed  Google Scholar 

  • Macchione AF, Caeiro XE, Godino A et al (2013) Availability of a rich source of sodium during the perinatal period programs the fluid balance restoration pattern in adult offspring. Physiol Behav 105:1035–1044

    Article  CAS  Google Scholar 

  • Macchione AF, Beas C, Dadam FM et al (2015) Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring. Neuroscience 298:120–136

    Article  CAS  PubMed  Google Scholar 

  • Málaga S, Díaz JJ, Arguelles J et al (2003) Blood pressure relates to sodium taste sensitivity and discrimination in adolescents. Pediatr Nephrol 18:431–434

    PubMed  Google Scholar 

  • Málaga I, Arguelles J, Díaz JJ et al (2005) Maternal pregnancy vomiting and offspring salt taste sensitivity and blood pressure. Pediatr Nephrol 20:956–960

    Article  PubMed  Google Scholar 

  • Mao C, Liu R, Bo L, Chen N, Li S, Xia S, Chen J, Li D, Zhang L, Xu Z (2013) High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. J Endocrinol 218(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattes RD (1997) The taste for salt in humans. Am J Clin Nutr 65:692–697

    Article  Google Scholar 

  • Mecawi AS, Araujo IG, Rocha FF et al (2010) Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation. Physiol Behav 99:118–124

    Article  CAS  PubMed  Google Scholar 

  • Mecawi AS, Ruginsk SG, Elias LL et al (2015a) Neuroendocrine regulation of Hydromineral homeostasis. Compr Physiol 5:1465–1516

    Article  Google Scholar 

  • Mecawi AS, Macchione AF, Nuñez P et al (2015b) Developmental programing of thirst and sodium appetite. Neurosci Biobehav Rev 51:1–14

    Article  PubMed  Google Scholar 

  • Midkiff EE, Bernstein IL (1983) The influence of age and experience on salt preference of the rat. Dev Psychobiol 16:385–394

    Article  CAS  PubMed  Google Scholar 

  • Moe KE (1986) The ontogeny of salt preference in rats. Dev Psychobiol 19:185–196

    Article  CAS  PubMed  Google Scholar 

  • Mouw DR, Vander AJ, Wagner J (1978) Effects of prenatal and early postnatal sodium deprivation on subsequent adult thirst and salt preference in rats. Am J Physiol Renal Physiol 234:F59–F63

    Article  CAS  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  CAS  Google Scholar 

  • Nicolaidis S, Galaverna O, Metzler CH (1990) Extracellular dehydration during pregnancy increases salt appetite of offspring. Am J Physiol Regul Integr Comp Physiol 258:R281–R283

    Article  CAS  Google Scholar 

  • Nowlis GH (1973) Taste elicited tongue movements in human newborn infants, an approach to palatability. In: Bosma J (ed) The fourth symposium on oral sensation and perception, development in the fetus and infant, 1st edn. Government Printing Office, Washington, DC, pp 292–303

    Google Scholar 

  • Nuñez P, Arguelles J, Perillan C (2015) Offspring’s hydromineral adaptive responses to maternal undernutrition during lactation. J Dev Orig Health Dis 6:520–529

    Article  PubMed  Google Scholar 

  • Perillan C, Costales M, Diaz F et al (2004) Thirst changes in offspring of hyperreninemic rat dams. Pharmacol Biochem Behav 79:709–713

    Article  CAS  PubMed  Google Scholar 

  • Perillan C, Costales M, Vijande M et al (2007) Maternal RAS influence on the ontogeny of thirst in the rat. Physiol Behav 92:554–559

    Article  CAS  PubMed  Google Scholar 

  • Perillan C, Costales M, Vijande M et al (2008) Extracellular dehydration in utero modifies thirst in neonatal rats. Appetite 51:599–603

    Article  CAS  PubMed  Google Scholar 

  • Riviere G, Lienhard D, Andrieu T et al (2011) Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics 6:478–489

    Article  CAS  PubMed  Google Scholar 

  • Rozin P (1991) Family resemblance in food and other domains, the family paradox and the role of parental congruence. Appetite 16:93–102

    Article  CAS  PubMed  Google Scholar 

  • Scallet AC, Wofford M, Meredith JC et al (2003) Dietary exposure to genistein increases vasopressin but does not alter beta-endorphin in the rat hypothalamus. Toxicol Sci 72:296–300

    Article  CAS  PubMed  Google Scholar 

  • Schmalbach NL, Kutscher CL (1975) Gonadectomy and the development of age-dependent polydipsia and the intake of NaCl solutions in the SWR/J mouse. Physiol Behav 14:825–832

    Article  CAS  PubMed  Google Scholar 

  • Shirazki A, Weintraub Z, Reich D et al (2007) Lowest neonatal serum sodium predicts sodium intake in lowbirth weight children. Am J Physiol Regul Integr Comp Physiol 292:R1683–R1689

    Article  CAS  PubMed  Google Scholar 

  • Silva MS, Lucio-Oliveira F, Mecawi AS et al (2017) Increased exposure to sodium during pregnancy and lactation changes basal and induced behavioral and neuroendocrine responses in adult male offspring. Physiol Rep 5:e13210. https://doi.org/10.14814/phy2.13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonetti GD, Raio L, Surbek D et al (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625–630

    Article  CAS  PubMed  Google Scholar 

  • Smart JL, Dobbing J (1977) Increased thirst and hunger in adult rats undernourished as infants: an alternative explanation. Br J Nutr 37:421–430

    Article  CAS  PubMed  Google Scholar 

  • Stein LJ, Cowart BJ, Beauchamp GK (2006) Salty taste acceptance by infants and young children is related to birth weight: longitudinal analysis of infants within the normal birth weight range. Eur J Clin Nutr 60:272–279

    Article  CAS  PubMed  Google Scholar 

  • Stein LJ, Cowart BJ, Beauchamp GK (2012) The development of salty taste acceptance is related to dietary experience in human infants: a prospective study. Am J Clin Nutr 95:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Mittal S, Ghildiyal A et al (2007) Salt preference, age and sex related variability. Indian J Physiol Pharmacol 51:91–95

    PubMed  Google Scholar 

  • Whitehead SA, Holden WA, Andrews PLR (1992) Pregnancy sickness. In: Bianchi AL, Grelot AD, Miller AD et al (eds) Mechanisms and control of emesis, 1st edn. INSERM/John Libbey Eurotext Ltd, New York, pp 297–306

    Google Scholar 

  • Wirth JB, Epstein AN (1976) Ontogeny of thirst in the infant rat. Am J Phys 230:188–198

    CAS  Google Scholar 

  • Wu L, Mao C, Liu Y et al (2011) Altered dipsogenic responses and expression of angiotensin receptors in the offspring exposed to prenatal high sucrose. Peptides 32:104–111

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ross MG (2000) Appearance of central dipsogenic mechanisms induced by dehydration in near-term rat fetus. Brain Res Dev Brain Res 121:11–18

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Mao C, Xia F et al (2010) Changed salt appetite and central angiotensin II-induced cellular activation in rat offspring following hypoxia during fetal stages. Peptides 31:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Fan Y, Xia F et al (2011) Prenatal water deprivation alters brain angiotensin system and dipsogenic changes in the offspring. Brain Res 1382:128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinner SH, McGarvey ST, Lipsitt LP et al (2002) Neonatal blood pressure and salt taste responsiveness. Hypertension 40:280–285

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Arguelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mecawi, A.S., Greenwood, M.P., Arguelles, J. (2019). Epigenetic Programming of Water Drinking and Sodium Intake. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_122

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_122

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics