Skip to main content

Diet and Epigenetic Alteration of Renal Function

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Adequate nutrition is fundamental to ensure undisturbed renal development. Macro- and micronutrient deficiency as well as energy overload or high-salt intake during gestation may significantly impair nephrogenesis and induce susceptibility toward disease. In addition, there is growing evidence that nutrition during early postnatal life is an important modulator of adult blood pressure and kidney function. The exact renal phenotype strongly depends on the type of dietary influence and the window of exposure. Thus, reduced glomerular count, microvascular rarefaction, and increased fibrosis are possible morphological findings. On the functional level, blood pressure levels, urinary protein excretion, and glomerular filtration rate are subject to dietary influences. Mechanistically, dysregulation of renin-angiotensin-aldosterone system (RAAS) components and other vasoactive substances, oxidative stress, altered mitochondrial energy metabolism, endoplasmic reticulum stress, and inflammatory processes are key factors. The present chapter gives an overview on current knowledge of dietary programming of renal disease. Defining the adequate amount of macro- and micronutrients which is needed for optimal kidney development remains a challenge for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

ACH09:

Grape skin extract with antioxidant properties

AGT:

Angiotensinogen

AT1:

Angiotensin II receptor type 1

AT2:

Angiotensin II receptor type 2

AMPK:

5′ adenosine monophosphate-activated protein kinase

BiP:

ER stress marker

CD2AP:

CD2-associated protein

CHOP:

ER stress marker

CR:

Calorie restriction

eGFR:

Estimated glomerular filtration rate

ER stress:

Endoplasmic reticulum stress

GFR:

Glomerular filtration rate

HFD:

High-fat diet

IQ:

Intelligence quotient

IUGR:

Intrauterine growth restriction

KIM-1:

Kidney injury molecule-1, biomarker for renal proximal tubule injury

LCPUFAs:

Long-chain polyunsaturated fatty acids

LP:

Low protein

mTORC1:

Mammalian target of rapamycin complex 1

NaCl:

Sodium chloride

NCC:

Sodium-chloride symporter

NGAL:

Neutrophil gelatinase-associated lipocalin, biomarker for acute kidney injury

NKCC2:

Sodium-potassium-chloride cotransporter

PR:

Protein restriction

RAAS:

Renin-angiotensin-aldosterone system

SGA:

Small for gestational age

SS-31:

Substance which protects mitochondrial cristae

TRPC6:

Transient receptor potential cation channel, subfamily C, member 6

US:

United States

References

  • Alcazar MA, Boehler E, Rother E, Amann K, Vohlen C, von Horsten S, Plank C, Dotsch J (2012) Early postnatal hyperalimentation impairs renal function via SOCS-3 mediated renal postreceptor leptin resistance. Endocrinology 153(3):1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Aliou Y, Liao MC, Zhao XP, Chang SY, Chenier I, Ingelfinger JR, Zhang SL (2016) Post-weaning high-fat diet accelerates kidney injury, but not hypertension programmed by maternal diabetes. Pediatr Res 79(3):416–424

    Article  CAS  PubMed  Google Scholar 

  • Ao Y, Sun Z, Hu S, Zuo N, Li B, Yang S, Xia L, Wu Y, Wang L, He Z, Wang H (2015) Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 287(2):128–138

    Article  CAS  PubMed  Google Scholar 

  • Armitage JA, Lakasing L, Taylor PD, Balachandran AA, Jensen RI, Dekou V, Ashton N, Nyengaard JR, Poston L (2005) Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J Physiol 565(Pt 1):171–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belizan JM, Villar J, Bergel E, del Pino A, Di Fulvio S, Galliano SV, Kattan C (1997) Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ 315(7103):281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Smith GD (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension 52(4):638–644

    Article  CAS  PubMed  Google Scholar 

  • Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142(7):2841–53

    Google Scholar 

  • Black MJ, Lim K, Zimanyi MA, Sampson AK, Bubb KJ, Flower RL, Parkington HC, Tare M, Denton KM (2015) Accelerated age-related decline in renal and vascular function in female rats following early-life growth restriction. Am J Phys Regul Integr Comp Phys 309(9):R1153–R1161

    CAS  Google Scholar 

  • Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100(4):520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boubred F, Buffat C, Feuerstein JM, Daniel L, Tsimaratos M, Oliver C, Lelievre-Pegorier M, Simeoni U (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Ren Physiol 293(6):F1944–F1949

    Article  CAS  Google Scholar 

  • Boubred F, Daniel L, Buffat C, Feuerstein JM, Tsimaratos M, Oliver C, Dignat-George F, Lelievre-Pegorier M, Simeoni U (2009) Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats. Am J Physiol Ren Physiol 297(4):F943–F951

    Article  CAS  Google Scholar 

  • Bregere C, Rebrin I, Gallaher TK, Sohal RS (2010) Effects of age and calorie restriction on tryptophan nitration, protein content, and activity of succinyl-CoA:3-ketoacid CoA transferase in rat kidney mitochondria. Free Radic Biol Med 48(4):609–618

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Rubio M, Buron MI, Lopez-Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM, Gonzalez-Reyes JA (2016) Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 15(3):477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germain N, Le NL, Pladys P, Gauthier C, Lahaie I, Abran D, Lavoie JC, Nuyt AM (2007) Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Phys Regul Integr Comp Phys 292(3):R1236–R1245

    CAS  Google Scholar 

  • Cardoso HD, Cabral EV, Vieira-Filho LD, Vieyra A, Paixao AD (2009) Fetal development and renal function in adult rats prenatally subjected to sodium overload. Pediatr Nephrol 24(10):1959–1965

    Article  PubMed  Google Scholar 

  • Chadwick MA, Vercoe PE, Williams IH, Revell DK (2009) Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 97(3–4):437–445

    Article  CAS  PubMed  Google Scholar 

  • Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics 23(2):159–171

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Jian DY, Lien CC, Lin YT, Ting CH, Chen LK, Hsu TC, Huang HM, Wu YT, Kuan TT, Chao YW, Wu LY, Huang SW, Juan CC (2016) Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats. J Endocrinol 231:109–120

    Article  CAS  PubMed  Google Scholar 

  • Chiplonkar SA, Agte VV, Tarwadi KV, Paknikar KM, Diwate UP (2004) Micronutrient deficiencies as predisposing factors for hypertension in lacto-vegetarian Indian adults. J Am Coll Nutr 23(3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Costa MR, Pires KM, Nalbones-Barbosa MN, Dos Santos Valenca S, Resende AC, de Moura RS (2016) Grape skin extract-derived polyphenols modify programming-induced renal endowment in prenatal protein-restricted male mouse offspring. Eur J Nutr 55(4):1455–1464

    Article  CAS  PubMed  Google Scholar 

  • Cox LA, Nijland MJ, Gilbert JS, Schlabritz-Loutsevitch NE, Hubbard GB, McDonald TJ, Shade RE, Nathanielsz PW (2006) Effect of 30 percent maternal nutrient restriction from 0.16 to 0.5 gestation on fetal baboon kidney gene expression. J Physiol 572(Pt 1):67–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBois BN, Pearson J, Mahmood T, Nguyen D, Thornburg K, Cherala G (2014) Perinatal growth restriction decreases diuretic action of furosemide in adult rats. Eur J Pharmacol 728:39–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Khashab EK, Hamdy AM, Maher KM, Fouad MA, Abbas GZ (2013) Effect of maternal vitamin A deficiency during pregnancy on neonatal kidney size. J Perinat Med 41(2):199–203

    Article  CAS  PubMed  Google Scholar 

  • Fanni D, Gerosa C, Nemolato S, Mocci C, Pichiri G, Coni P, Congiu T, Piludu M, Piras M, Fraschini M, Zaffanello M, Iacovidou N, Van Eyken P, Monga G, Faa G, Fanos V (2012) “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true? J Matern Fetal Neonatal Med 25(Suppl 3):41–48

    Article  PubMed  Google Scholar 

  • Forsyth JS, Willatts P, Agostoni C, Bissenden J, Casaer P, Boehm G (2003) Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ 326(7396):953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman MW, Hood MY, Moore LL, Nguyen US, Singer MR, Andon MB (1995) Effect of calcium supplementation on blood pressure in children. J Pediatr 127(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, Philip B, Mhaskar A, Benjamin A, Maharaj S, Laforte D, Raju C, Phadke K (2007) Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol 22(2):209–214

    Article  PubMed  Google Scholar 

  • Gray SP, Kenna K, Bertram JF, Hoy WE, Yan EB, Bocking AD, Brien JF, Walker DW, Harding R, Moritz KM (2008) Repeated ethanol exposure during late gestation decreases nephron endowment in fetal sheep. Am J Phys Regul Integr Comp Phys 295(2):R568–R574

    CAS  Google Scholar 

  • Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21(11):1891–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SP, Cullen-McEwen LA, Bertram JF, Moritz KM (2012) Mechanism of alcohol-induced impairment in renal development: could it be reduced by retinoic acid? Clin Exp Pharmacol Physiol 39(9):807–813

    Article  CAS  PubMed  Google Scholar 

  • Gray C, Al-Dujaili EA, Sparrow AJ, Gardiner SM, Craigon J, Welham SJ, Gardner DS (2013) Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling. PLoS One 8(8):e72682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guberman C, Jellyman JK, Han G, Ross MG, Desai M (2013) Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol 209(3):262 e261–262 e268

    Article  CAS  Google Scholar 

  • Guessous I, McClellan W, Kleinbaum D, Vaccarino V, Hugues H, Boulat O, Marques-Vidal P, Paccaud F, Theler JM, Gaspoz JM, Burnier M, Waeber G, Vollenweider P, Bochud M (2015) Serum 25-hydroxyvitamin D level and kidney function decline in a Swiss general adult population. Clin J Am Soc Nephrol 10(7):1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. Am J Kidney Dis 51(1):10–20

    Article  PubMed  Google Scholar 

  • Hashem RM, Mohamed RH, Abo-El-matty DM (2016) Effect of curcumin on TNFR2 and TRAF2 in unilateral ureteral obstruction in rats. Nutrition 32(4):478–485

    Article  CAS  PubMed  Google Scholar 

  • Hawkesworth S, Wagatsuma Y, Kahn AI, Hawlader MD, Fulford AJ, Arifeen SE, Persson LA, Moore SE (2013) Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J Nutr 143(5):728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am J Med Sci 351(3):286–295

    Article  PubMed  Google Scholar 

  • Huang C, Guo C, Nichols C, Chen S, Martorell R (2014) Elevated levels of protein in urine in adulthood after exposure to the Chinese famine of 1959–61 during gestation and the early postnatal period. Int J Epidemiol 43(6):1806–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson AA, Dunn RL, Marchand MC, Langley-Evans SC (2002) Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin Sci (Lond) 103(6):633–639

    Article  CAS  Google Scholar 

  • Jackson CM, Alexander BT, Roach L, Haggerty D, Marbury DC, Hutchens ZM, Flynn ER, Maric-Bilkan C (2012) Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol Ren Physiol 302(6):F774–F783

    Article  CAS  Google Scholar 

  • Jones SE, Bilous RW, Flyvbjerg A, Marshall SM (2001) Intra-uterine environment influences glomerular number and the acute renal adaptation to experimental diabetes. Diabetologia 44(6):721–728

    Article  CAS  PubMed  Google Scholar 

  • Keyzer CA, Lambers-Heerspink HJ, Joosten MM, Deetman PE, Gansevoort RT, Navis G, Kema IP, de Zeeuw D, Bakker SJ, de Borst MH, P. S. Group (2015) Plasma vitamin D level and change in albuminuria and eGFR according to sodium intake. Clin J Am Soc Nephrol 10(12):2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koleganova N, Piecha G, Ritz E, Becker LE, Muller A, Weckbach M, Nyengaard JR, Schirmacher P, Gross-Weissmann ML (2011) Both high and low maternal salt intake in pregnancy alter kidney development in the offspring. Am J Physiol Ren Physiol 301(2):F344–F354

    Article  CAS  Google Scholar 

  • Konje JC, Bell SC, Morton JJ, de Chazal R, Taylor DJ (1996) Human fetal kidney morphometry during gestation and the relationship between weight, kidney morphometry and plasma active renin concentration at birth. Clin Sci (Lond) 91(2):169–175

    Article  CAS  Google Scholar 

  • Kooijman MN, Bakker H, Franco OH, Hofman A, Taal HR, Jaddoe VW (2015) Fetal smoke exposure and kidney outcomes in school-aged children. Am J Kidney Dis 66(3):412–420

    Article  CAS  PubMed  Google Scholar 

  • Langley-Evans SC, Jackson AA (1995) Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp Biochem Physiol A Physiol 110(3):223–8

    Google Scholar 

  • Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64(11):965–974

    Article  CAS  PubMed  Google Scholar 

  • Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS (2012) A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109(34):13668–13673

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei X, Chen Y, Ye J, Ouyang F, Jiang F, Zhang J (2015) The optimal postnatal growth trajectory for term small for gestational age babies: a prospective cohort study. J Pediatr 166(1):54–58

    Article  PubMed  Google Scholar 

  • Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54(5):1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W (2016) Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Ren Physiol 310(5):F351–F363

    Article  CAS  Google Scholar 

  • Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Lloyd LJ, Foster T, Rhodes P, Rhind SM, Gardner DS (2012) Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J Physiol 590(2):377–393

    Article  CAS  PubMed  Google Scholar 

  • Lozano G, Elmaghrabi A, Salley J, Siddique K, Gattineni J, Baum M (2015) Effect of prenatal programming and postnatal rearing on glomerular filtration rate in adult rats. Am J Physiol Ren Physiol 308(5):F411–F419

    Article  CAS  Google Scholar 

  • Magalhaes JC, da Silveira AB, Mota DL, Paixao AD (2006) Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload. Exp Physiol 91(3):611–619

    Article  PubMed  Google Scholar 

  • Makrakis J, Zimanyi MA, Black MJ (2007) Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol 22(11):1861–1867

    Article  PubMed  Google Scholar 

  • Mao C, Liu R, Bo L, Chen N, Li S, Xia S, Chen J, Li D, Zhang L, Xu Z (2013) High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system. J Endocrinol 218(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiss WF, Klehn KL (1981) The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry 73(2):251–268

    Article  CAS  PubMed  Google Scholar 

  • Nwagwu MO, Cook A, Langley-Evans SC (2000) Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr 83(1):79–85

    CAS  PubMed  Google Scholar 

  • Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PM, Krediet RT, Osmond C, Barker DJ, Bleker OP (2005) Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol 16(1):189–194

    Article  PubMed  Google Scholar 

  • Pereira SP, Oliveira PJ, Tavares LC, Moreno AJ, Cox LA, Nathanielsz PW, Nijland MJ (2015) Effects of moderate global maternal nutrient reduction on fetal baboon renal mitochondrial gene expression at 0.9 gestation. Am J Physiol Ren Physiol 308(11):F1217–F1228

    Article  CAS  Google Scholar 

  • Perng W, Gillman MW, Mantzoros CS, Oken E (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24(11):793–800. e791

    Article  PubMed  PubMed Central  Google Scholar 

  • Plank C, Ostreicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, Dotsch J (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70(11):1974–1982

    Article  CAS  PubMed  Google Scholar 

  • Quigley R (2012) Developmental changes in renal function. Curr Opin Pediatr 24(2):184–190

    Article  PubMed  Google Scholar 

  • Robertson LT, Trevino-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, Hine C, Vargas D, Zheng H, Ozaki CK, Kristal BS, Simpson SJ, Mitchell JR (2015) Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J Nutr 145(8):1717–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104(6):607–14

    Google Scholar 

  • Sanders MW, Fazzi GE, Janssen GM, Blanco CE, De Mey JG (2005) High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats. Hypertension 46(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Sharkey D, Gardner DS, Symonds ME, Budge H (2009) Maternal nutrient restriction during early fetal kidney development attenuates the renal innate inflammatory response in obese young adult offspring. Am J Physiol Ren Physiol 297(5):F1199–F1207

    Article  CAS  Google Scholar 

  • Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37(5):909–914

    Article  CAS  PubMed  Google Scholar 

  • Siddique K, Guzman GL, Gattineni J, Baum M (2014) Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reprod Sci 21(12):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slickers JE, Olshan AF, Siega-Riz AM, Honein MA, Aylsworth AS, S. National Birth Defects Prevention (2008) Maternal body mass index and lifestyle exposures and the risk of bilateral renal agenesis or hypoplasia: the National Birth Defects Prevention Study. Am J Epidemiol 168(11):1259–1267

    Article  PubMed  Google Scholar 

  • Sonneveld R, Ferre S, Hoenderop JG, Dijkman HB, Berden JH, Bindels RJ, Wetzels JF, van der Vlag J, Nijenhuis T (2013) Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am J Pathol 182(4):1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld R, Hoenderop JG, Stavenuiter AW, Ferrantelli E, Baltissen MP, Dijkman HB, Florquin S, Rops AL, Wetzels JF, Berden JH, van der Vlag J, Nijenhuis T (2016) 1,25-vitamin D3 deficiency induces albuminuria. Am J Pathol 186(4):794–804

    Article  CAS  PubMed  Google Scholar 

  • Stewart CP, Christian P, Schulze KJ, Leclerq SC, West KP Jr, Khatry SK (2009) Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J Nutr 139(8):1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Sutherland MR, Gubhaju L, Yoder BA, Stahlman MT, Black MJ (2009) The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr Res 65(4):397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22(7):1365–1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV (2016) Protection of mitochondria prevents high fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011

    Article  CAS  PubMed  Google Scholar 

  • Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, van der Heijden AJ, Jaddoe VW (2011) Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr Nephrol 26(8):1275–1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomat AL, Inserra F, Veiras L, Vallone MC, Balaszczuk AM, Costa MA, Arranz C (2008) Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am J Phys Regul Integr Comp Phys 295(2):R543–R549

    CAS  Google Scholar 

  • Vaidya A, Saville N, Shrestha BP, Costello AM, Manandhar DS, Osrin D (2008) Effects of antenatal multiple micronutrient supplementation on children’s weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371(9611):492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19(1):151–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18(6):1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49(4):460–467

    Article  CAS  PubMed  Google Scholar 

  • Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65(4):1339–1348

    Article  PubMed  Google Scholar 

  • Yamada-Obara N, Yamagishi SI, Taguchi K, Kaida Y, Yokoro M, Nakayama Y, Ando R, Asanuma K, Matsui T, Ueda S, Okuda S, Fukami K (2016) Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring. Clin Exp Nephrol 20:853–861

    Article  CAS  PubMed  Google Scholar 

  • Zeman FJ (1968) Effects of maternal protein restriction on the kidney of the newborn young of rats. J Nutr 94(2):111–116

    Article  CAS  PubMed  Google Scholar 

  • Zidar N, Cavic MA, Kenda RB, Koselj M, Ferluga D (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79(1):28–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dötsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nüsken, E., Nüsken, KD., Dötsch, J. (2019). Diet and Epigenetic Alteration of Renal Function. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics