Skip to main content

Spreading of Liquids on Substrates

  • Reference work entry
  • First Online:
Handbook of Adhesion Technology
  • 4674 Accesses

Abstract

A short overview of relevant processes and parameters in spreading of liquids on substrates is presented. In a simplified view, the dynamics of these processes can be understood as being controlled by the balance of driving forces and resistance due to dissipative processes. Analogies between spreading and dewetting are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blake TD Haynes JM (1969) Kinetics of liquid-liquid displacement. J Coll Interf Sci 30:421

    Article  Google Scholar 

  • Blake TD (2006) The physics of moving wetting lines. J Coll Interf Sci 299:1

    Article  Google Scholar 

  • Bonn D, Egges J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739

    Article  Google Scholar 

  • Brochard-Wyart F, di Meglio JM, Quéré D, de Gennes PG (1991) Spreading of nonvolatile liquids in a continuum picture. Langmuir 7:335

    Article  Google Scholar 

  • Brochard-Wyart F, de Gennes PG (1992) Dynamics of partial wetting. Adv Coll Interf Sci 39:1

    Article  Google Scholar 

  • Carré A, Gastel JC, Shanahan MER (1996) Viscoelastic effects in the spreading of liquids. Nature 379:432

    Article  Google Scholar 

  • Cazabat AM, Cohen Stuart MA (1986) Dynamics of wetting: effects of surface roughness. J Phys Chem 90:5845

    Article  Google Scholar 

  • Cazabat AM (1987) How does a droplet spread?. Contemp Phys 28:347

    Article  Google Scholar 

  • Cazabat AM, Gerdes S, Valignat MP, Villette S (1997) Dynamics of wetting: from theory to experiment. Interf Sci 5:129

    Article  Google Scholar 

  • Checco A (2009) Liquid spreading under nanoscale confinement. Phys Rev Lett 102:106103

    Article  Google Scholar 

  • Chen P, Gaydos L, Neumann AW (1996) Contact line quadrilateral relation. Generalization of the neumann triangle relation to include line tension. Langmuir 12:5956

    Article  Google Scholar 

  • De Coninck J, Blake TD (2008) Wetting and molecular dynamics simulations of simple liquids. Annu Rev Mater Res 38:1

    Article  Google Scholar 

  • De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827

    Article  Google Scholar 

  • De Gennes PG, Hua X, LevinsonP (1990) Dynamics of wetting: local contact angles. J Fluid Mech 212:55

    Article  MathSciNet  Google Scholar 

  • Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann Rev Fluid Mech 11:371

    Article  Google Scholar 

  • Eustathopoulos N (1998) Dynamics of wetting in reactive metal/ceramic systems. Acta Mater 46:2319

    Google Scholar 

  • Fondecave R, Brochard-Wyart F (1998) Polymers as dewetting agents. Macromolecules 31:9305

    Article  Google Scholar 

  • Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhesion Sci Tech 6:1269

    Article  Google Scholar 

  • Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Coll Interf Sci 35:85

    Article  Google Scholar 

  • Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press

    Google Scholar 

  • Leger L, Joanny JF (1992) Liquid spreading. Rep Prog Phys 55:431

    Article  Google Scholar 

  • Marmur A (1997) Line Tension and the Intrinsic Contact Angle in Solid–Liquid–Fluid Systems. J Coll Interf Sci 186:462

    Google Scholar 

  • Marmur A (2009) Solid-surface characterization by wetting. Annu Rev Mater Res 39:473

    Article  Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705

    Article  Google Scholar 

  • Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859

    Article  Google Scholar 

  • Nikolov AD, Wasan DT, Chengara A, Koczo K, Policello GA, Kolossvary I (2002) Superspreading driven by Marangoni flow. Adv Coll Interf Sci 96:325

    Article  Google Scholar 

  • Reiter G, Khanna R (2000a) Real-time determination of the slippage length in autophobic polymer dewetting. Phys Rev Lett 85:2753

    Article  Google Scholar 

  • Reiter G, Khanna R (2000b) Kinetics of autophobic dewetting of polymer films. Langmuir 16:6351

    Article  Google Scholar 

  • Rolley E, Guthmann C, Gombrowcicz R, Repain V (1998) Roughness of the contact line on a disordered substrate. Phys Rev Lett 80:2865

    Article  Google Scholar 

  • Shanahan MER, Carré A (1995) Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11:1396

    Article  Google Scholar 

  • Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D 2:1473

    Article  Google Scholar 

  • Troian SM, Herbolzheimer E, Safran SA (1990) Model for the fingering instability of spreading surfactant drops. Phys Rev Lett 65:333

    Article  Google Scholar 

  • Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11:583

    Article  Google Scholar 

  • Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15:6616

    Article  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65

    Article  Google Scholar 

  • Zhang F, Barilia G, Boborodea A, Bailly C, Nysten B, Jonas AM (2005) Partial dewetting of polyethylene thin films on rough silicon dioxide surfaces. Langmuir 21:7427

    Article  Google Scholar 

  • Zisman WA (1964) Chapter 1: Relation of the equilibrium contact angle to liquid and solid constitution. In: Contact angle, wettability, and adhesion. Advances in chemistry series, vol 43. American Chemical Society, Washington, DC, pp 1–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Reiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reiter, G. (2018). Spreading of Liquids on Substrates. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-55411-2_5

Download citation

Publish with us

Policies and ethics