Skip to main content

The Impact of Stellar Activity on the Detection and Characterization of Exoplanets

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

At the level of a stellar photosphere, stellar magnetic fields manifest themselves as the stellar equivalents of sunspots and faculae. The dark, localized spots give rise to a rotationally modulated background signal that both increases the fractional depth of exoplanet transits and increases the variability of the background against which they are detected. The convective motions of the electrically conducting photospheric gas are inhibited in spots and in facular regions, again producing rotationally modulated variability in spectral line shapes as the star rotates. Here I discuss the physical phenomena that give rise to these forms of variability, their impact on the detection and characterization of extrasolar planets, and proxy indicators and observing strategies that can mitigate this impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigrain S, Irwin M (2004) Practical planet prospecting. MNRAS 350:331–345

    Article  ADS  Google Scholar 

  • Aigrain S, Favata F, Gilmore G (2004) Characterising stellar micro-variability for planetary transit searches. A&A 414:1139–1152

    Article  ADS  Google Scholar 

  • Aigrain S, Pont F, Zucker S (2012) A simple method to estimate radial velocity variations due to stellar activity using photometry. MNRAS 419:3147–3158

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Tuomi M, Arriagada P et al (2016) No evidence for activity correlations in the radial velocities of Kapteyn’s star. ApJ 830:74

    Article  ADS  Google Scholar 

  • Artigau É, Kouach D, Donati JF et al (2014) SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. In: Ground-based and Airborne Instrumentation for Astronomy V. Proc SPIE 9147:914715. https://doi.org/10.1117/12.2055663

  • Barnes SA (2003) On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. ApJ 586:464–479

    Article  ADS  Google Scholar 

  • Barnes SA (2007) Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. ApJ 669:1167–1189

    Article  ADS  Google Scholar 

  • Boisse I, Bonfils X, Santos NC (2012) SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots. A&A 545:A109

    Article  ADS  Google Scholar 

  • Cegla HM, Shelyag S, Watson CA, Mathioudakis M (2013) Stellar surface magneto-convection as a source of astrophysical noise. I. Multi-component parameterization of absorption line profiles. ApJ 763:95

    Article  ADS  Google Scholar 

  • Conod U, Blind N, Wildi F, Pepe F (2016) Adaptive optics for high resolution spectroscopy: a direct application with the future NIRPS spectrograph. In: Adaptive optics systems V. Proceedings of the SPIE, vol 9909, p 990941. https://doi.org/10.1117/12.2233651

  • Desidera S, Gratton RG, Endl M et al (2004) No planet around HD 219542 B. A&A 420:L27–L30

    Article  ADS  Google Scholar 

  • Desort M, Lagrange AM, Galland F, Udry S, Mayor M (2007) Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity. A&A 473:983–993

    Article  ADS  Google Scholar 

  • Donati JF, Moutou C, Malo L et al (2016) A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534:662–666

    Article  ADS  Google Scholar 

  • Dravins D (1987a) Stellar granulation: part two – stellar photospheric line asymmetries. A&A 172:211

    ADS  Google Scholar 

  • Dravins D (1987b) Stellar granulation. I – the observability of stellar photospheric convection. A&A 172:200–224

    Google Scholar 

  • Dravins D, Lindegren L, Nordlund A (1981) Solar granulation – influence of convection on spectral line asymmetries and wavelength shifts. A&A 96:345–364

    ADS  Google Scholar 

  • Dumusque X (2016) Radial velocity fitting challenge. I. Simulating the data set including realistic stellar radial-velocity signals. A&A 593:A5

    Article  ADS  Google Scholar 

  • Dumusque X, Boisse I, Santos NC (2014) SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. ApJ 796:132

    Article  ADS  Google Scholar 

  • Faria JP, Haywood RD, Brewer BJ et al (2016) Uncovering the planets and stellar activity of CoRoT-7 using only radial velocities. A&A 588:A31

    Article  ADS  Google Scholar 

  • Figueira P, Marmier M, Bonfils X et al (2010) Evidence against the young hot-Jupiter around BD +20 1790. A&A 513:L8

    Article  ADS  Google Scholar 

  • Gray DF, Toner CG (1985) Inferred properties of stellar granulation. PASP 97:543–550

    Article  ADS  Google Scholar 

  • Hatzes AP (2002) Starspots and exoplanets. Astronomische Nachrichten 323:392–394

    Article  ADS  Google Scholar 

  • Haywood RD, Collier Cameron A, Queloz D et al (2014) Planets and stellar activity: hide and seek in the CoRoT-7 system. MNRAS 443:2517–2531

    Article  ADS  Google Scholar 

  • Haywood RD, Collier Cameron A, Unruh YC et al (2016) The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations. MNRAS 457:3637–3651

    Article  ADS  Google Scholar 

  • Henry GW, Donahue RA, Baliunas SL (2002) A false planet around HD 192263. ApJ 577: L111–L114

    Article  ADS  Google Scholar 

  • Kane SR, Thirumalachari B, Henry GW et al (2016) Stellar activity and exclusion of the outer planet in the HD 99492 System. ApJ 820:L5

    Article  ADS  Google Scholar 

  • Lagrange AM, Desort M, Meunier N (2010) Using the Sun to estimate Earth-like planets detection capabilities . I. Impact of cold spots. A&A 512:A38

    Article  Google Scholar 

  • Lanza AF, Bonomo AS, Moutou C et al (2010) Photospheric activity, rotation, and radial velocity variations of the planet-hosting star CoRoT-7. A&A 520:A53

    Article  ADS  Google Scholar 

  • López-Morales M, Haywood RD, Coughlin JL et al (2016) Kepler-21b: a rocky planet around a V = 8.25 magnitude star. AJ 152:204

    Article  ADS  Google Scholar 

  • Mestel L, Spruit HC (1987) On magnetic braking of late-type stars. MNRAS 226:57–66

    Article  ADS  Google Scholar 

  • Meunier N, Desort M, Lagrange AM (2010) Using the Sun to estimate Earth-like planets detection capabilities . II. Impact of plages. A&A 512:A39

    Google Scholar 

  • Noyes RW, Hartmann LW, Baliunas SL, Duncan DK, Vaughan AH (1984) Rotation, convection, and magnetic activity in lower main-sequence stars. ApJ 279:763–777

    Article  ADS  Google Scholar 

  • Oshagh M, Boisse I, Boué G et al (2013) SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. A&A 549:A35

    Article  ADS  Google Scholar 

  • Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. ApJ 128:664

    Article  ADS  Google Scholar 

  • Petit P, Donati JF, Hébrard E et al (2015) A maximum entropy approach to detect close-in giant planets around active stars. A&A 584:A84

    Article  ADS  Google Scholar 

  • Pont F, Knutson H, Gilliland RL, Moutou C, Charbonneau D (2008) Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. MNRAS 385:109–118

    Article  ADS  Google Scholar 

  • Pont F, Sing DK, Gibson NP et al (2013) The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. MNRAS 432:2917–2944

    Article  ADS  Google Scholar 

  • Queloz D, Henry GW, Sivan JP et al (2001) No planet for HD 166435. A&A 379:279–287

    Article  ADS  Google Scholar 

  • Quirrenbach A, Amado PJ, Seifert W et al (2012) CARMENES. I: instrument and survey overview. In: Ground-based and airborne instrumentation for astronomy IV. Proceedings of the SPIE, vol 8446, p 84460R. https://doi.org/10.1117/12.925164

  • Rackham B, Espinoza N, Apai D et al (2017) ACCESS I: an optical transmission spectrum of GJ 1214b reveals a heterogeneous stellar photosphere. ApJ 834:151

    Article  ADS  Google Scholar 

  • Rajpaul V, Aigrain S, Osborne MA, Reece S, Roberts S (2015) A Gaussian process framework for modelling stellar activity signals in radial velocity data. MNRAS 452:2269–2291

    Article  ADS  Google Scholar 

  • Saar SH, Donahue RA (1997) Activity-related radial velocity variation in cool stars. ApJ 485: 319–327

    Article  ADS  Google Scholar 

  • Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171:565

    Article  ADS  Google Scholar 

  • Title AM, Tarbell TD, Topka KP et al (1989) Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. ApJ 336:475–494

    Article  ADS  Google Scholar 

  • Toner CG, Gray DF (1988) The starpatch on the G8 dwarf XI Bootis A. ApJ 334:1008–1020

    Article  ADS  Google Scholar 

  • Vaughan AH, Preston GW, Baliunas SL et al (1981) Stellar rotation in lower main-sequence stars measured from time variations in H and K emission-line fluxes. I – initial results. ApJ 250: 276–283

    Google Scholar 

  • Weber EJ, Davis L Jr (1967) The angular momentum of the solar wind. ApJ 148:217–227

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Collier Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cameron, A.C. (2018). The Impact of Stellar Activity on the Detection and Characterization of Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_23

Download citation

Publish with us

Policies and ethics