Skip to main content

Signatures of Star-Planet Interactions

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Planets interact with their host stars through gravity, radiation, and magnetic fields, and for those giant planets that orbit their stars within ∼10 stellar radii (∼0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic, and spectropolarimetric studies. At such close distances, the planet orbits within the sub-Alfvénic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bastian TS, Dulk GA, Leblanc Y (2000) A search for radio emission from extrasolar planets. ApJ 545:1058–1063

    Article  ADS  Google Scholar 

  • Bouchy F, Udry S, Mayor M et al (2005) ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. A&A 444:L15–L19

    Article  ADS  Google Scholar 

  • Butler RP, Wright JT, Marcy GW et al (2006) Catalog of nearby exoplanets. ApJ 646:505–522

    Article  ADS  Google Scholar 

  • Christensen UR (2010) Dynamo scaling laws and applications to the planets. Space Sci Rev 152:565–590

    Article  ADS  Google Scholar 

  • Christensen UR, Holzwarth V, Reiners A (2009) Energy flux determines magnetic field strength of planets and stars. Nature 457:167–169

    Article  ADS  Google Scholar 

  • Cohen O, Drake JJ, Kashyap VL et al (2009) Interactions of the magnetospheres of stars and close-in giant planets. ApJ 704:L85–L88

    Article  ADS  Google Scholar 

  • Cohen O, Kashyap VL, Drake JJ et al (2011) The dynamics of stellar coronae harboring hot Jupiters. I. A time-dependent magnetohydrodynamic simulation of the interplanetary environment in the HD 189733 planetary system. ApJ 733:67

    Article  ADS  Google Scholar 

  • Cohen O, Drake JJ, Glocer A et al (2014) Magnetospheric structure and atmospheric joule heating of habitable planets orbiting M-dwarf stars. ApJ 790:57

    Article  ADS  Google Scholar 

  • Cohen O, Ma Y, Drake JJ et al (2015) The interaction of Venus-like, M-dwarf planets with the stellar wind of their host star. ApJ 806:41

    Article  ADS  Google Scholar 

  • Cranmer SR, Saar SH (2007) Exoplanet-induced chromospheric activity: realistic light curves from solar-type magnetic fields. ArXiv Astrophysics e-prints

    Google Scholar 

  • Cuntz M, Saar SH, Musielak ZE (2000a) On stellar activity enhancement due to interactions with extrasolar giant planets. ApJ 533:L151–L154

    Article  ADS  Google Scholar 

  • Cuntz M, Saar SH, Musielak ZE (2000b) On stellar activity enhancement due to interactions with extrasolar giant planets. ApJ 533:L151–L154

    Article  ADS  Google Scholar 

  • do Nascimento JD Jr, Vidotto AA, Petit P et al (2016) Magnetic field and wind of kappa ceti: toward the planetary habitability of the young sun when life arose on earth. ApJ 820:L15

    Google Scholar 

  • Donati JF, Moutou C, Farès R et al (2008) Magnetic cycles of the planet-hosting star τ Bootis. MNRAS 385:1179–1185

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45

    Article  ADS  Google Scholar 

  • Fares R, Donati JF, Moutou C et al (2009) Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal. MNRAS 398:1383–1391

    Google Scholar 

  • Fares R, Donati JF, Moutou C et al (2010) Searching for star-planet interactions within the magnetosphere of HD189733. MNRAS 406:409–419

    Article  ADS  Google Scholar 

  • Fares R, Donati JF, Moutou C et al (2012) Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. MNRAS 423:1006–1017

    Article  ADS  Google Scholar 

  • Fares R, Moutou C, Donati JF et al (2013) A small survey of the magnetic fields of planet-host stars. MNRAS 435:1451–1462

    Article  ADS  Google Scholar 

  • Farrell WM, Desch MD, Zarka P (1999) On the possibility of coherent cyclotron emission from extrasolar planets. J Geophys Res 104:14,025–14,032

    Article  ADS  Google Scholar 

  • France K, Parke Loyd RO, Youngblood A et al (2016) The MUSCLES treasury survey. I. Motivation and overview. ApJ 820:89

    Google Scholar 

  • Gurdemir L, Redfield S, Cuntz M (2012) Planet-induced emission enhancements in HD 179949: results from McDonald observations. PASA 29:141–149

    Article  ADS  Google Scholar 

  • Hartman JD (2010) A correlation between stellar activity and the surface gravity of hot Jupiters. ApJ 717:L138–L142

    Article  ADS  Google Scholar 

  • Hussain GAJ, Alvarado-Gómez JD, Grunhut J et al (2016) A spectro-polarimetric study of the planet-hosting G dwarf, HD 147513. A&A 585:A77

    Article  ADS  Google Scholar 

  • Jardine M, Collier Cameron A (2008) Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. A&A 490:843–851

    Article  ADS  Google Scholar 

  • Jeffers SV, Petit P, Marsden SC et al (2014) 𝜖 Eridani: an active K dwarf and a planet hosting star? The variability of its large-scale magnetic field topology. A&A 569:A79

    Article  ADS  Google Scholar 

  • Krejčová T, Budaj J (2012) Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets. A&A 540:A82

    Article  ADS  Google Scholar 

  • Lanza AF (2008) Hot Jupiters and stellar magnetic activity. A&A 487:1163–1170

    Article  ADS  Google Scholar 

  • Lanza AF (2009) Stellar coronal magnetic fields and star-planet interaction. A&A 505:339–350

    Article  ADS  Google Scholar 

  • Lanza AF (2010) Hot Jupiters and the evolution of stellar angular momentum. A&A 512:A77

    Article  ADS  Google Scholar 

  • Lanza AF (2012) Star-planet magnetic interaction and activity in late-type stars with close-in planets. A&A 544:A23

    Article  ADS  Google Scholar 

  • Lanza AF (2013) Star-planet magnetic interaction and evaporation of planetary atmospheres. A&A 557:A31

    Article  ADS  Google Scholar 

  • Lazio J, Bastian T, Bryden G et al (2009) Magnetospheric emissions from extrasolar planets. In: astro2010: the astronomy and astrophysics decadal survey, astronomy, vol 2010

    Google Scholar 

  • Lazio TJW, Shkolnik E, Hallinan G, Planetary habitability study Team (2016) Planetary magnetic fields: planetary interiors and habitability. Technical Report

    Google Scholar 

  • Llama J, Wood K, Jardine M et al (2011) The shocking transit of WASP-12b: modelling the observed early ingress in the near-ultraviolet. MNRAS 416:L41–L44

    Article  ADS  Google Scholar 

  • Maggio A, Pillitteri I, Scandariato G et al (2015) Coordinated X-ray and optical observations of star-planet interaction in HD 17156. ApJ 811:L2

    Article  ADS  Google Scholar 

  • Matsakos T, Uribe A, Königl A (2015) Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. A&A 578:A6

    Article  ADS  Google Scholar 

  • McIvor T, Jardine M, Holzwarth V (2006) Extrasolar planets, stellar winds and chromospheric hotspots. MNRAS 367:L1–L5

    Article  ADS  Google Scholar 

  • Mengel MW, Marsden SC, Carter BD et al (2017) A BCool survey of the magnetic fields of planet-hosting solar-type stars. MNRAS 465:2734–2747

    Article  ADS  Google Scholar 

  • Mignone A, Bodo G, Massaglia S et al (2007) PLUTO: a numerical code for computational astrophysics. ApJS 170:228–242

    Article  ADS  Google Scholar 

  • Mignone A, Zanni C, Tzeferacos P et al (2012) The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics. ApJS 198:7

    Article  ADS  Google Scholar 

  • Miller BP, Gallo E, Wright JT, Pearson EG (2015) A comprehensive statistical assessment of star-planet interaction. ApJ 799:163

    Article  ADS  Google Scholar 

  • Moutou C, Donati JF, Savalle R et al (2007) Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733. A&A 473:651–660

    Article  ADS  Google Scholar 

  • Pagano I, Lanza AF, Leto G et al (2009) CoRoT-2a magnetic activity: hints for possible star-planet interaction. Earth Moon Planets 105:373–378

    Article  ADS  Google Scholar 

  • Pillitteri I, Wolk SJ, Cohen O et al (2010) XMM-Newton observations of HD 189733 during planetary transits. ApJ 722:1216–1225

    Article  ADS  Google Scholar 

  • Pillitteri I, Günther HM, Wolk SJ, Kashyap VL, Cohen O (2011) X-ray activity phased with planet motion in HD 189733? ApJ 741:L18

    Article  ADS  Google Scholar 

  • Pillitteri I, Wolk SJ, Lopez-Santiago J et al (2014a) The corona of HD 189733 and its X-ray activity. ApJ 785:145

    Article  ADS  Google Scholar 

  • Pillitteri I, Wolk SJ, Sciortino S, Antoci V (2014b) No X-rays from WASP-18. Implications for its age, activity, and the influence of its massive hot Jupiter. A&A 567:A128

    Article  ADS  Google Scholar 

  • Pillitteri I, Maggio A, Micela G et al (2015) FUV variability of HD 189733. Is the star accreting material from its hot Jupiter? ApJ 805:52

    Article  ADS  Google Scholar 

  • Piskunov N (1996) Doppler imaging of eclipsing binaries. In: Strassmeier KG, Linsky JL (eds) Stellar surface structure, IAU symposium, vol 176, p 45

    Article  ADS  Google Scholar 

  • Poppenhaeger K, Robrade J, Schmitt JHMM (2010) Coronal properties of planet-bearing stars. A&A 515:A98

    Article  ADS  Google Scholar 

  • Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154:284–309

    Article  ADS  MathSciNet  Google Scholar 

  • Preusse S, Kopp A, Büchner J, Motschmann U (2006) A magnetic communication scenario for hot Jupiters. A&A 460:317–322

    Article  ADS  Google Scholar 

  • Saar SH, Cuntz M, Shkolnik E (2004) Stellar activity enhancement by planets: theory and observations. In: Dupree AK, Benz AO (eds) Stars as Suns: activity, evolution and planets, IAU symposium, vol 219, p 355

    Article  ADS  Google Scholar 

  • Scandariato G, Maggio A, Lanza AF et al (2013) A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromospheric and coronal activity. A&A 552:A7

    Article  ADS  Google Scholar 

  • Schröter S, Czesla S, Wolter U et al (2011) The corona and companion of CoRoT-2a. Insights from X-rays and optical spectroscopy. A&A 532:A3

    Article  ADS  Google Scholar 

  • Shkolnik EL (2013) An ultraviolet investigation of activity on exoplanet host stars. ApJ 766:9

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA (2003) Evidence for planet-induced chromospheric activity on HD 179949. ApJ 597:1092–1096

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA, Gu PG, Kürster M (2005a) Hot Jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. ApJ 622:1075–1090

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Rucinski SM, Bohlender DA, Davidge TJ (2005b) Investigating Ca II emission in the RS canum venaticorum binary ER vulpeculae using the broadening function formalism. AJ 130:799–808

    Article  ADS  Google Scholar 

  • Shkolnik E, Bohlender DA, Walker GAH, Collier Cameron A (2008) The on/off nature of star-planet interactions. ApJ 676:628–638

    Article  ADS  Google Scholar 

  • Tóth G, Sokolov IV, Gombosi TI et al (2005) Space weather modeling framework: a new tool for the space science community. J Geophys Res Space Phys 110(A12):n/a–n/a. http://dx.doi.org/10.1029/2005JA011126, a12226

  • Tóth G, van der Holst B, Sokolov IV et al (2012) Adaptive numerical algorithms in space weather modeling. J Comput Phys 231:870–903

    Article  ADS  MathSciNet  Google Scholar 

  • Treumann RA (2006) The electron-cyclotron maser for astrophysical application. A&A Rev 13:229–315

    Article  ADS  Google Scholar 

  • Vidotto AA, Opher M, Jatenco-Pereira V, Gombosi TI (2009) Three-dimensional numerical simulations of magnetized winds of solar-like stars. ApJ 699:441–452

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Helling C (2010) Early UV ingress in WASP-12b: measuring planetary magnetic fields. ApJ 722:L168–L172

    Article  ADS  Google Scholar 

  • Vidotto AA, Fares R, Jardine M et al (2012) The stellar wind cycles and planetary radio emission of the τ boo system. MNRAS 423:3285–3298

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Morin J et al (2013) Effects of M dwarf magnetic fields on potentially habitable planets. A&A 557:A67

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Morin J et al (2014) M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. MNRAS 438:1162–1175

    Article  ADS  Google Scholar 

  • Walker GAH, Croll B, Matthews JM et al (2008) MOST detects variability on τ Bootis a possibly induced by its planetary companion. A&A 482:691–697

    Article  ADS  Google Scholar 

  • Wood BE, Müller HR, Zank GP, Linsky JL, Redfield S (2005) New mass-loss measurements from astrospheric Lyα absorption. ApJ 628:L143–L146

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenya L. Shkolnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shkolnik, E.L., Llama, J. (2018). Signatures of Star-Planet Interactions. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_20

Download citation

Publish with us

Policies and ethics