Skip to main content

Transit Photometry as an Exoplanet Discovery Method

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method’s strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part, we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current, and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigrain S, Favata F Gilmore G (2004) Characterising stellar micro-variability for planetary transit searches. A&A 414:1139–1152

    Article  ADS  Google Scholar 

  • Aigrain S, Pont F, Fressin F et al. (2009) Noise properties of the CoRoT data. A planet-finding perspective. A&A 506:425–429

    Google Scholar 

  • Almenara JM, Deeg HJ, Aigrain S et al. (2009) Rate and nature of false positives in the CoRoT exoplanet search. A&A 506:337–341

    Article  ADS  Google Scholar 

  • Alonso R, Brown TM, Torres G et al. (2004a) TrES-1: The transiting planet of a bright K0 V star. ApJ 613:L153–L156

    Article  ADS  Google Scholar 

  • Alonso R, Deeg HJ, Brown TM Belmonte JA (2004b) Strategies to recognize false alarms in transit experiments: experiences from the STARE project. In: Favata F, Aigrain S Wilson A (eds) Stellar structure and habitable Planet finding, vol 538. ESA Special Publication, Noordwijk, pp 255–259

    Google Scholar 

  • Alonso R, Auvergne M, Baglin A et al. (2008) Transiting exoplanets from the CoRoT space mission. II. CoRoT-Exo-2b: a transiting planet around an active G star. A&A 482:L21–L24

    Article  ADS  Google Scholar 

  • Bakos GÁ, Csubry Z, Penev K et al. (2013) HATSouth: a global network of fully automated identical wide-field telescopes. PASP 125:154

    Article  ADS  Google Scholar 

  • Barge P, Baglin A, Auvergne M et al. (2008) Transiting exoplanets from the CoRoT space mission. I. CoRoT-Exo-1b: a low-density short-period planet around a G0V star. A&A 482:L17–L20

    Article  ADS  Google Scholar 

  • Batalha NM, Borucki WJ, Bryson ST et al. (2011) Kepler’s first rocky planet: Kepler-10b. ApJ 729:27

    Article  ADS  Google Scholar 

  • Bayliss D, Gillen E, Eigmuller P et al. (2018) NGTS-1b: a hot Jupiter transiting an M-dwarf. MNRAS 475:4467–4475

    Article  ADS  Google Scholar 

  • Beatty TG, Gaudi BS (2008) Predicting the yields of photometric surveys for transiting extrasolar planets. ApJ 686:1302–1330

    Article  ADS  Google Scholar 

  • Berta ZK, Irwin J, Charbonneau D, Burke CJ Falco EE (2012) Transit detection in the MEarth survey of nearby M dwarfs: bridging the clean-first, search-later divide. AJ 144:145

    Article  ADS  Google Scholar 

  • Borucki WJ, Scargle JD Hudson HS (1985) Detectability of extrasolar planetary transits. ApJ 291:852–854

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch DG, Dunham EW Jenkins JM (1997) The Kepler mission: a mission to detennine the frequency of inner planets near the habitable zone for a wide range of stars. In: Soderblom D (ed) Planets beyond the solar system and the next generation of space missions. Astronomical Society of the Pacific conference series, vol 119. p 153

    Google Scholar 

  • Bouchy F, Udry S, Mayor M et al. (2005) ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. A&A 444:L15–L19

    Article  ADS  Google Scholar 

  • Brown TM (2003) Expected detection and false alarm rates for transiting Jovian planets. ApJ 593:L125–L128

    Article  ADS  Google Scholar 

  • Cabrera J, Barros SCC, Armstrong D et al. (2017) Disproving the validated planets K2-78b, K2-82b, and K2-92b. The importance of independently confirming planetary candidates. A&A 606:A75

    Article  ADS  Google Scholar 

  • Cameron AC (2016) Extrasolar planetary transits. In: Bozza V, Mancini L, Sozzetti A (eds) Methods of detecting exoplanets: 1st advanced school on exoplanetary science. Astrophysics and space science library, vol 428, p 89. https://doi.org/10.1007/978-3-319-27458-4_2

    Chapter  Google Scholar 

  • Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a sun-like star. ApJ 529:L45–L48

    Article  ADS  Google Scholar 

  • Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384

    Article  ADS  Google Scholar 

  • Christian DJ, Pollacco DL, Skillen I et al. (2006) The SuperWASP wide-field exoplanetary transit survey: candidates from fields 23 h < RA < 03 h. MNRAS 372:1117–1128

    Article  ADS  Google Scholar 

  • Collier Cameron A, Pollacco D, Street RA et al. (2006) A fast hybrid algorithm for exoplanetary transit searches. MNRAS 373:799–810

    Article  ADS  Google Scholar 

  • Collier Cameron A, Guenther E, Smalley B et al (2010) Line-profile tomography of exoplanet transits – II. A gas-giant planet transiting a rapidly rotating A5 star. MNRAS 407:507–514

    Article  ADS  Google Scholar 

  • Coughlin JL, Thompson SE, Bryson ST et al. (2014) Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1–Q12 data. AJ 147:119

    Article  ADS  Google Scholar 

  • Deeg HJ, Doyle LR, Kozhevnikov VP et al (1998) Near-term detectability of terrestrial extrasolar planets: TEP network observations of CM Draconis. A&A 338:479–490

    ADS  Google Scholar 

  • Deeg HJ, Garrido R Claret A (2001) Probing the stellar surface of HD 209458 from multicolor transit observations. New Astronomy 6:51–60

    Article  ADS  Google Scholar 

  • Deeg HJ, Gillon M, Shporer A et al (2009) Ground-based photometry of space-based transit detections: photometric follow-up of the CoRoT mission. A&A 506:343–352

    Article  ADS  Google Scholar 

  • Deeg HJ, Moutou C, Erikson A et al. (2010) A transiting giant planet with a temperature between 250K and 430K. Nature 464:384–387

    Article  ADS  Google Scholar 

  • Deleuil M, Aigrain S, Moutou C et al (2018) Planets, candidates, and binaries from the corot/exoplanet program. A&A, in print

    Google Scholar 

  • Díaz RF, Almenara JM, Santerne A et al (2014) PASTIS: Bayesian extrasolar planet validation – I. General framework, models, and performance. MNRAS 441:983–1004

    Article  ADS  Google Scholar 

  • Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-earth transiting a nearby cool star. Nature 544:333–336

    Article  ADS  Google Scholar 

  • Doyle LR, Deeg HJ, Kozhevnikov VP et al. (2000) Observational limits on terrestrial-sized inner planets around the CM Draconis system using the photometric transit method with a matched-filter algorithm. ApJ 535:338–349

    Article  ADS  Google Scholar 

  • Elachi C, Angel R, Beichman CA et al (1996) A road map for the exploration of neighboring planetary systems (ExNPS). Jet Propulsion Laboratory report, NASA

    Google Scholar 

  • Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a hubble space telescope search. ApJ 545:L47–L51

    Article  ADS  Google Scholar 

  • Gilliland RL, Chaplin WJ, Dunham EW et al (2011) Kepler mission stellar and instrument noise properties. ApJS 197:6

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Giménez A (2006) Equations for the analysis of the light curves of extra-solar planetary transits. A&A 450:1231–1237

    Article  ADS  Google Scholar 

  • Günther MN, Queloz D, Demory BO, Bouchy F (2017a) A new yield simulator for transiting planets and false positives: application to the next generation transit survey. MNRAS 465: 3379–3389

    Article  ADS  Google Scholar 

  • Günther MN, Queloz D, Gillen E et al (2017b) Centroid vetting of transiting planet candidates from the next generation transit survey. MNRAS 472:295–307

    Article  ADS  Google Scholar 

  • Guterman P, Mazeh T, Faigler S (2015) Exposure-based algorithm for removing systematics out of the CoRoT light curves. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 277–281

    Google Scholar 

  • Haswell CA (2010) Transiting exoplanets. Cambridge University Press, Cambridge. ISBN:9780521139380

    Google Scholar 

  • Henry GW, Marcy GW, Butler RP, Vogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529: L41–L44

    Article  ADS  Google Scholar 

  • Horne K (2003) Status and prospects of planetary transit searches: hot Jupiters galore. In: Deming D, Seager S (eds) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific conference series, vol 294. pp 361–370

    Google Scholar 

  • Howell SB, Sobeck C, Haas M et al (2014) The K2 mission: characterization and early results. PASP 126:398

    Article  ADS  Google Scholar 

  • Jehin E, Opitom C, Manfroid J, Hutsemékers D, Gillon M (2014) The TRAPPIST comet survey. In: Muinonen K, Penttilä A, Granvik M et al. (eds) Asteroids, comets, meteors 2014: Proceedings of the conference held 30 June – 4 July, 2014 in Helsinki, Finland

    Google Scholar 

  • Jenkins JM (2002) The impact of solar-like variability on the detectability of transiting terrestrial planets. ApJ 575:493–505

    Article  ADS  Google Scholar 

  • Jenkins JM, Doyle LR, Cullers DK (1996) A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis. Icarus 119:244–260

    Article  ADS  Google Scholar 

  • Jenkins JM, Caldwell DA, Chandrasekaran H et al (2010a) Initial characteristics of Kepler long cadence data for detecting transiting planets. ApJ 713:L120–L125

    Article  ADS  Google Scholar 

  • Jenkins JM, Chandrasekaran H, McCauliff SD et al (2010b) Transiting planet search in the Kepler pipeline. In: Software and cyberinfrastructure for astronomy. Proceeding of SPIE, vol 7740, p 77400D. https://doi.org/10.1117/12.856764

  • Jha S, Charbonneau D, Garnavich PM et al. (2000) Multicolor observations of a planetary transit of HD 209458. ApJ 540:L45–L48

    Article  ADS  Google Scholar 

  • Kipping DM, Bastien FA, Stassun KG et al (2014) Flicker as a tool for characterizing planets through asterodensity profiling. ApJ 785:L32

    Article  ADS  Google Scholar 

  • Koch D, Borucki W, Cullers K et al (1996) System design of a mission to detect earth-sized planets in the inner orbits of solar-like stars. J Geophys Res 101:9297–9302

    Article  ADS  Google Scholar 

  • Konacki M, Torres G, Jha S, Sasselov DD (2003) An extrasolar planet that transits the disk of its parent star. Nature 421:507–509

    Article  ADS  Google Scholar 

  • Kovács G, Zucker S, Mazeh T (2002) A box-fitting algorithm in the search for periodic transits. A&A 391:369–377

    Article  ADS  Google Scholar 

  • Kovács G, Bakos G, Noyes RW (2005) A trend filtering algorithm for wide-field variability surveys. MNRAS 356:557–567

    Article  ADS  Google Scholar 

  • Latham DW (2003) Spectroscopic follow-up observations of planetary transit candidates identified by project vulcan. In: Deming D Seager S (eds) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific conference series, vol 294. pp 409–412

    Google Scholar 

  • Latham DW (2007) Spectroscopic and photometric follow-up observations. In: Afonso C, Weldrake D, Henning T (eds) Transiting extrapolar planets workshop. Astronomical Society of the Pacific conference series, vol 366, p 203

    Google Scholar 

  • Latham DW (2008) Characterization of terrestrial planets identified by the Kepler mission. Physica Scripta 130(1):014034

    Article  Google Scholar 

  • Léger A, Rouan D, Schneider J et al (2009) Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-earth with measured radius. A&A 506:287–302

    Article  ADS  Google Scholar 

  • Lissauer JJ, Fabrycky DC, Ford EB et al (2011) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58

    Article  ADS  Google Scholar 

  • Lissauer JJ, Marcy GW, Rowe JF et al (2012) Almost all of Kepler’s multiple-planet candidates are planets. ApJ 750:112

    Article  ADS  Google Scholar 

  • Lissauer JJ, Marcy GW, Bryson ST et al (2014) Validation of Kepler’s multiple planet candidates. II: refined statistical framework and descriptions of systems of special interest. ApJ 784, 44

    Google Scholar 

  • Mandel K, Agol E (2002) Analytic light curves for planetary transit searches. ApJ 580:L171–L175

    Article  ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-earths and Neptune-mass planets. ArXiv:11092497

    Google Scholar 

  • McArthur BE, Endl M, Cochran WD et al (2004) Detection of a Neptune-Mass planet in the ρ1 Cancri system using the hobby-eberly telescope. ApJ 614:L81–L84

    Article  ADS  Google Scholar 

  • Morton TD (2012) An efficient automated validation procedure for exoplanet transit candidates. ApJ 761:6

    Article  ADS  Google Scholar 

  • Morton TD, Bryson ST, Coughlin JL et al (2016) False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. ApJ 822:86

    Article  ADS  Google Scholar 

  • Moutou C, Deleuil M, Guillot T et al (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634

    Article  ADS  Google Scholar 

  • O’Donovan FT (2008) The detection and exploration of planets from the Trans-atlantic Exoplanet Survey. PhD thesis, California Institute of Technology

    Google Scholar 

  • O’Donovan FT, Charbonneau D, Mandushev G et al (2006) TrES-2: the first transiting planet in the Kepler field. ApJ 651:L61–L64

    Article  ADS  Google Scholar 

  • Parviainen H, Deeg HJ, Belmonte JA (2013) Secondary eclipses in the CoRoT light curves. A homogeneous search based on Bayesian model selection. A&A 550:A67

    Article  ADS  Google Scholar 

  • Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118:1407–1418

    Article  ADS  Google Scholar 

  • Pont F, Zucker S, Queloz D (2006) The effect of red noise on planetary transit detection. MNRAS 373:231–242

    Article  ADS  Google Scholar 

  • Queloz D, Eggenberger A, Mayor M et al (2000) Detection of a spectroscopic transit by the planet orbiting the star HD209458. A&A 359:L13–L17

    ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Régulo C, Almenara JM, Alonso R, Deeg H, Roca Cortés T (2007) TRUFAS, a wavelet-based algorithm for the rapid detection of planetary transits. A&A 467:1345–1352

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003

    Article  Google Scholar 

  • Rowe JF, Bryson ST, Marcy GW et al (2014) Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ 784:45

    Article  ADS  Google Scholar 

  • Sahu KC, Casertano S, Bond HE et al (2006) Transiting extrasolar planetary candidates in the Galactic bulge. Nature 443:534–540

    Article  ADS  Google Scholar 

  • Santerne A, Fressin F, Díaz RF et al (2013) The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys. A&A 557:A139

    Article  ADS  Google Scholar 

  • Scalo J, Kaltenegger L, Segura AG et al (2007) M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7:85–166

    Article  ADS  Google Scholar 

  • Seager S Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055

    Article  ADS  Google Scholar 

  • Shporer A, Zhou G, Vanderburg A et al (2017) Three statistically validated K2 transiting warm Jupiter exoplanets confirmed as low-mass stars. ApJ 847:L18

    Article  ADS  Google Scholar 

  • Smith AMS WASP Consortium (2014) The SuperWASP exoplanet transit survey. Contributions of the Astronomical Observatory Skalnate Pleso 43:500–512

    ADS  Google Scholar 

  • Smith AMS, Collier Cameron A, Christian DJ et al (2006) The impact of correlated noise on SuperWASP detection rates for transiting extrasolar planets. MNRAS 373:1151–1158

    Article  ADS  Google Scholar 

  • Snellen IAG (2004) A new method for probing the atmospheres of transiting exoplanets. MNRAS 353:L1–L6

    Article  ADS  Google Scholar 

  • Struve O (1952) Proposal for a project of high-precision stellar radial velocity work. Observatory 72:199–200

    ADS  Google Scholar 

  • Tamuz O, Mazeh T Zucker S (2005) Correcting systematic effects in a large set of photometric light curves. MNRAS 356:1466–1470

    Article  ADS  Google Scholar 

  • Tingley B, Bonomo AS Deeg HJ (2011) Using stellar densities to evaluate transiting exoplanetary candidates. ApJ 726:112

    Article  ADS  Google Scholar 

  • Torres G, Fressin F, Batalha NM et al (2011) Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler-9, and validation of Kepler-9 d, a super-earth-size planet in a multiple system. ApJ 727:24

    Article  ADS  Google Scholar 

  • Torres G, Kipping DM, Fressin F et al (2015) Validation of 12 small Kepler transiting planets in the habitable zone. ApJ 800:99

    Article  ADS  Google Scholar 

  • Torres G, Kane SR, Rowe JF et al (2017) Validation of small Kepler transiting planet candidates in or near the habitable zone. AJ 154:264

    Article  ADS  Google Scholar 

  • Udalski A (2003) The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. Acta Astron 53:291–305

    ADS  Google Scholar 

  • Wheatley PJ, Pollacco DL, Queloz D et al (2013) The next generation transit survey (NGTS). Eur Phys J Web Conf 47:13002. https://doi.org/10.1051/epjconf/20134713002

    Article  Google Scholar 

  • Wheatley PJ, West RG, Goad MR et al (2018) The next generation transit survey (NGTS). MNRAS 475, 4476–4493

    Article  ADS  Google Scholar 

  • Winn JN (2010) Exoplanet transits and occultations. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 55–77. arXiv:1001.2010

    Google Scholar 

  • Winn JN, Matthews JM, Dawson RI et al (2011) A super-Earth transiting a naked-eye star. ApJ 737:L18

    Article  ADS  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ 753:160

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the Spanish Secretary of State for R&D&i (MINECO) is acknowledged by HD under the grant ESP2015-65712-C5-4-R and by RA for the Ramón y Cajal program RYC-2010-06519 and the programs RETOS ESP2014-57495-C2-1-R and ESP2016-80435-C2-2-R. This contribution has benefited from the use of the NASA Exoplanet Archive and the Extrasolar Planets Encyclopaedia, and the authors acknowledge the people behind these tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Deeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deeg, H.J., Alonso, R. (2018). Transit Photometry as an Exoplanet Discovery Method. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_117

Download citation

Publish with us

Policies and ethics