Skip to main content

The Way to Circumbinary Planets

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The historic quest to detect circumbinary planets (CBPs) dates back to a time before the first extrasolar planets were detected. Eclipsing binary star systems (EBs) were considered prime targets for the detection of CBP transits, as it was considered likely that the planetary orbits would also be close to edge on to our line of sight and so cross (transit) the stellar discs of the eclipsing stars. The presence of CBPs remained however doubtful until the unequivocal detection, by transit, of Kepler-16b and of further CBPs with the NASA Kepler space telescope.

Stellar eclipses were also timed for about a dozen small-mass main-sequence EBs as well. In this chapter we discuss the history of theory and observations in the search for CBPs and the various techniques that have been applied, as well as several methods that might provide results in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong D, Martin DV, Brown G et al (2011) Placing limits on the transit timing variations of circumbinary exoplanets. MNRAS 434:3047

    Article  ADS  Google Scholar 

  • Armstrong DJ, Osborn H, Brown DJA et al (2014) On the abundance of circumbinary planets. MNRAS 444:1873

    Article  ADS  Google Scholar 

  • Backer DC, Foster RS, Sallmen S (1993) A second companion of the millisecond pulsar 1620 – 26. Nature 365:817

    Article  ADS  Google Scholar 

  • Benedict GF, Harrison TE (2017) HD 202206: a circumbinary brown dwarf system. AJ 153:258

    Article  ADS  Google Scholar 

  • Bennett DP, Rhie SH, Udalski A et al (2016) The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. AJ 152:125

    Article  ADS  Google Scholar 

  • Beuermann K, Hessman FV, Dreizler S et al (2010) Two planets orbiting the recently formed post-common envelope binary NN Serpentis. A&A 521:L60

    Article  ADS  Google Scholar 

  • Beuermann K, Buhlmann J, Diese J et al (2011) The giant planet orbiting the cataclysmic binary DP Leonis. A&A 526:A53

    Article  ADS  Google Scholar 

  • Black DC (1982) A simple criterion for determining the dynamical stability of three-body systems. AJ 87:1333

    Article  ADS  Google Scholar 

  • Borkovits TB, Erdi E, Forgács-Dajka E, Kovács T (2003) On the detectability of long period perturbations in close hierarchical triple stellar systems. A&A 398:1091–1102

    Article  ADS  Google Scholar 

  • Borkovits TB, Csizmadia SZ, Forgács-Dajka E, Hegedus T (2011) Transit timing variations in eccentric hierarchical triple exoplanetary systems I. Perturbations on the time scale of the orbital period of the perturber. A&A 528:A53

    Article  ADS  Google Scholar 

  • Borucki WJ, Summers AL (1984) The photometric method of detecting other planetary systems. Icarus 58:121

    Article  ADS  Google Scholar 

  • Burgasser AJ, Simcoe RA, Bochanski JJ et al (2010) Clouds in the coldest brown dwarfs: fire spectroscopy of Ross 458C. ApJ 725:1405

    Article  ADS  Google Scholar 

  • Castelli F (1977) The spectrum of e aurigae outside eclipse. Ap&SS 49:179

    Article  ADS  Google Scholar 

  • Chavez CE, Georgakarakos N, Prodan S et al (2014) A dynamical stability study of Kepler circumbinary planetary systems with one planet. MNRAS 446:1283

    Article  ADS  Google Scholar 

  • Conroy KE, Prša A, Stassun KG (2014) Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. AJ 147:45

    Article  ADS  Google Scholar 

  • Correia ACM, Udry S, Mayor M et al (2005) The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? A&A 440:751

    Article  ADS  Google Scholar 

  • Couetdic J, Laskar J, Correia ACM, Mayor M, Udry S (2010) Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits. A&A 519:10

    Article  ADS  Google Scholar 

  • Currie T, Burrows A, Daemgen S (2014) A first- look atmospheric modeling study of the young directly imaged planet-mass companion, ROXs 42Bb. ApJ 787:104

    Article  ADS  Google Scholar 

  • Deeg HJ, Doyle LR (2011) Reflected eclipses on circumbinary planets. In: Bouchy F et al (eds) Detection and dynamics of transiting exoplanets, St. Michel l’Observatoire, France. EPJ Web of conferences, 11, id.05005

    Google Scholar 

  • Deeg HJ, Tingley B (2017) TEE, an estimator for the precision of eclipse and transit minimum times. A&A 599:93

    Article  ADS  Google Scholar 

  • Deeg HJ, Doyle LR, Kozhevnikov VP et al (1998) A photometric search for transits of extrasolar planets: observations and photometric analysis of CM Draconis. A&A 338:479

    ADS  Google Scholar 

  • Deeg HJ, Doyle LR, Kozhevnikov VP (2000) A search for jovian-mass planets around CM Draconis using eclipse minima timing. A&A 358:L5

    ADS  Google Scholar 

  • Deeg HJ, Ocaña B, Kozhevnikov VP et al (2008) Extrasolar planet detection by binary stellar eclipse timing: evidence for a third body around CM Draconis. A&A 480:563

    Article  ADS  Google Scholar 

  • Doolin S, Blundell KM (2011) The dynamics and stability of circumbinary orbits. MNRAS 418:2656

    Article  ADS  Google Scholar 

  • Doyle LR, Deeg HJ (2004) Timing detection of eclipsing binary planets and transiting extrasolar moons. In: Norris RP, Stootman FH (eds) Bioastronomy 2002: life among the stars, IAU symposium 213:80

    Google Scholar 

  • Doyle LR, Deeg HJ, Jenkins JM et al (1998) Detectability of Jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems. In Rebolo R et al (eds) Brown dwarfs and extrasolar planets, ASP conference series 134:224

    Google Scholar 

  • Doyle LR, Deeg HJ, Kozhevnikov VP et al (2000) Observational limits on terrestrial-sized inner planets around the CM Draconis system using the photometric transit method with a matched-filter algorithm. ApJ 535:338

    Article  ADS  Google Scholar 

  • Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting Circumbinary planet. Science 333:1602

    Article  ADS  Google Scholar 

  • Dvorak R (1986) Critical orbits in the elliptic restricted three-body problem. A&A 167:379

    ADS  MATH  Google Scholar 

  • Dvorak R, Froeschle C, Froeschle C (1989) Stability of outer planetary orbits (P-types) in binaries. A&A 226:335

    ADS  Google Scholar 

  • Flammarion C (1874) Les Étoiles doubles. La Nat Revue Sci 37:161

    Google Scholar 

  • Flammarion C (1884) Les Terres du Ciel; voyage astronomique sur les autres mondes et description des conditions actuelles de la vie sur les diverses planètes du système solaire; (11th edition), p 757

    Google Scholar 

  • Goodricke J (1784) On the periods of the changes of light in the star Algol. In a letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, D.D.F.R.S. Professor of Astronomy at Cambridge. Philos Trans R Soc Lond 74(0):287

    Google Scholar 

  • Haghighipour N, Kaltenegger L (2013) Calculating the habitable zone of binary star systems. II P-type binaries. ApJ 777:166

    Article  ADS  Google Scholar 

  • Hale A, Doyle LR (1994) The photometric detection of extrasolar planets revisited. Astroph & Space Sci 212:335

    Article  ADS  Google Scholar 

  • Hamers AS, Perets HB, Portegies Zwart SF (2016) A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. MNRAS 455:3180

    Article  ADS  Google Scholar 

  • Heath M, Doyle LR, Joshi MM, Haberle R (1999) Habitablility of planets around M-dwarf stars. Orig Life 29:405

    Article  Google Scholar 

  • Holman M, Wiegert PA (1999) Long-term stability of planets in binary systems. AJ 117:621

    Article  ADS  Google Scholar 

  • Huygens C (1677) Lettre N° 2104. In: Bosscha J (ed) Œuvres complètes de Christiaan Huygens. Tome VIII: Correspondance 1676–1684. Martinus Nijhoff, The Hague (published 1899), p 32 (in Latin)

    Google Scholar 

  • Jain C, Paul B, Sharma R, Jaleel A, Dutta A (2017) Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658–298. MNRAS 468:L118

    Article  ADS  Google Scholar 

  • Jenkins JM, Doyle LR (2003) Detecting reflected light from close-in Giant planets using space-based photometers. ApJ 595:429

    Article  ADS  Google Scholar 

  • Jenkins JM, Doyle LR, Cullers K (1996) A matched-filter method for ground-based sub- noise detection of extrasolar planets in eclipsing binaries: application to CM Draconis. Icarus 119:244

    Article  ADS  Google Scholar 

  • Joshi MM, Haberle RM, Reynolds RT (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450

    Article  ADS  Google Scholar 

  • Joshi MM (2003) Climate model studies of synchronously rotating planets. Astrobiology 3:415

    Article  ADS  Google Scholar 

  • Klagyivik P, Deeg HJ, Cabrera J, Csizmadia SZ, Almenara JM (2017) Limits to the presence of transiting circumbinary planets in CoRoT data. A&A 602:A117

    Article  ADS  Google Scholar 

  • Konacki M, Muterspaugh MW, Kulkarni SR, Hełminiak KG (2009) The radial velocity Tatooine search for Circumbinary planets: planet detection limits for a sample of double-lined binary stars. ApJ 704:513

    Article  ADS  Google Scholar 

  • Konacki M, Sybilski P, Kozłowski SK, Ratajczak M, Hełminiak KG (2012) Circumbinary planets and the SOLARIS project. IAU Symp 282:111

    ADS  Google Scholar 

  • Kondo Y, Parsons SB, Henize KG et al (1983) Skylab ultraviolet stellar spectra: emission lines from the Beta Lyrae system. ApJ 208:468

    Article  ADS  Google Scholar 

  • Krist JE, Stapelfeldt KR, Watson AM (2002) Hubble space telescope/WFPC2 images of the GG Tauri Circumbinary disk. ApJ 570:785

    Article  ADS  Google Scholar 

  • Lee JW, Hinse TC, Youn JH, Han W (2014) The pulsating sdB+M eclipsing system NY Virginis and its circumbinary planets. MNRAS 445:2331

    Article  ADS  Google Scholar 

  • Martin DV (2017) Circumbinary planets II – when transits come and go. MNRAS 465:3235

    Article  ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2014) Planets transiting non-eclipsing binaries. A&A 570:91

    Article  ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2015) Circumbinary planets – why they are so likely to transit. MNRAS 449:781

    Article  ADS  Google Scholar 

  • Martin DV, Triaud AHMJ (2016) Kozai-Lidov cycles towards the limit of circumbinary planets. MNRAS 455:46

    Article  ADS  Google Scholar 

  • Martin DV, Mazeh T, Fabrycky DC (2015) No circumbinary planets transiting the tightest Kepler binaries – a possible fingerprint of a third star. MNRAS 453:3554

    Article  ADS  Google Scholar 

  • McCabe C, Duchêne G, Ghez AM (2002) NICMOS images of the GG Tau circumbinary disk. ApJ 575:974

    Article  ADS  Google Scholar 

  • Morais MHM, Giuppone CA (2012) Stability of prograde and retrograde planets in circular binary systems. MNRAS 424:52

    Article  ADS  Google Scholar 

  • Morales JC, Ribas I, Jordi C et al (2009) Absolute properties of the low-mass eclipsing binary CM Draconis. ApJ 691:1400

    Article  ADS  Google Scholar 

  • Nelson A, Marzari F (2016) Dynamics of circumstellar disks. III. The case of GG Tau A. ApJ 93:40

    Google Scholar 

  • Paczynski B (1976) Common envelope binaries. In: IAU symposium no. 73, p 75

    Article  ADS  Google Scholar 

  • Pendleton YJ, Black DC (1983) Further studies on criteria for the onset of dynamical instability in general three-body systems. AJ 88:1415

    Article  ADS  Google Scholar 

  • Pilat-Lohinger E, Funk B, Dvorak R (2003) Stability limits in double stars: a study of inclined planetary orbits. A&A 400:1085

    Article  ADS  Google Scholar 

  • Qian S-B, Liu L, Zhu L-Y et al (2012) A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. MNRAS 422:L24

    Article  ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249

    Article  ADS  Google Scholar 

  • Sahlmann J, Triaud AHMJ, Martin DV (2015) Gaia’s potential for the discovery of circumbinary planets. MNRAS 447:287

    Article  ADS  Google Scholar 

  • Schneider J (1994) On the occultations of a binary star by a circum-orbiting dark companion. Planet Space Sci 42:539

    Article  ADS  Google Scholar 

  • Schneider J, Chevreton M (1990) The photometric search for earth-sized extrasolar planets by occultation in binary systems. A&A 232:251

    ADS  Google Scholar 

  • Schneider J, Doyle LR (1995) Ground-based detection of terrestrial extrasolar planets by photometry: the case for CM Draconis. Earth Moon Planet 71:153

    Article  ADS  Google Scholar 

  • Sigurdsson S, Richer H, Hansen BM, Stairs IH, Thorsett SE (2003) A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301:193

    Article  ADS  Google Scholar 

  • Struve O (1952) Proposal for a project of high precision radial velocity work. The Observatory 72:199

    ADS  Google Scholar 

  • Sybilski PM, Konacki M, Kozłowski SK (2010) Detecting circumbinary planets using eclipse timing of binary stars – numerical simulations. MNRAS 405:657

    ADS  Google Scholar 

  • Thorsett SE, Arzoumanian Z, Taylor JH (1993) PSR B1620-26 – a binary radio pulsar with a planetary companion? ApJ 412:L33

    Article  ADS  Google Scholar 

  • Welsh WF, Orosz JA, Carter JA (2012) Transiting circumbinary planets Kepler-34b and Kepler-35b. Nature 481:475

    Article  ADS  Google Scholar 

Download references

Acknowledgements

HD acknowledges support by grant ESP2015-65712-C5-4-R of the Spanish Secretary of State for R&D&i (MINECO). This contribution has benefited from the use of the NASA Exoplanet Archive and the Extrasolar Planets Encyclopaedia, and the authors acknowledge the people behind these tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurance R. Doyle .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Doyle, L.R., Deeg, H.J. (2018). The Way to Circumbinary Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_115

Download citation

Publish with us

Policies and ethics