Skip to main content

Plant Tissue Culture Technology: Present and Future Development

  • Reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The application of plant tissue cultures in fundamental and applied studies on various biological species has been rapidly growing. The use of in vitro technology for commercial propagation of plant species and for the production of bioactive components from them has become profitable industry worldwide.

Various regeneration systems (protoplast cultures and somatic embryogenesis) and their importance for the advance of strategically significant priorities in the development of biotechnological science in agriculture, medicine, and pharmacy are treated in the present chapter.

We believe that in the future development of the in vitro technology the major priorities could be conservation of plant genetic resources; restoring the balance between research studies related to genetic transformation of plants with the aim of providing sufficient, quality and safety foods for the world population, on the one hand, and the studies aimed at determining the risk of growing and consuming them, on the other; creating transgenic plants maintaining a constant level of induced protein; and, last but not least, the use of plant resources possessing valuable biologically active substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2, 4-d:

2,4-Dichlorophenoxyacetic acid

2-iP:

2-Isopentenyladenine

BAP:

6-Benzylaminopurin

DKW:

DKW/Juglans medium, Driver JA, Kuniyuki AH 1984

DNA:

Deoxyribonucleic acid

E. coli :

Escherichia coli

ED:

Encapsulation-dehydration

GA3:

Gibberellic acid

IBA:

Indole-3-butyric acid

IgG:

Immunoglobulins

MAT:

Multi-auto-transformation

MS:

Murashige and Skoog medium,1962

OM:

Olive medium

PGRs:

Plant growth regulators

PTC:

Tissue culture method

PVY:

Potato resistant virus Y

TDZ:

Thidiazuron

WPM:

Woody plant tissue medium, Lioyd and McCown,1980

References

  1. Schleiden MS (1838) Beiträge zur Phytogenesis. In: Müller J (ed) Archiv für Anatomie, Physiologie und wissenschaftliche Medicin. Berlin, pp 137–176

    Google Scholar 

  2. Schwann T (1839) Mikroskopische Untersuchungen uber die Ubereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Verlag der Sander’schen Buchhandlung, Berlin (G. E. Reimer)

    Google Scholar 

  3. Turner W (1890) The cell theory past and present. J Anat Physiol 24(2):253–287

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tavassoli M (1980) The cell theory: a foundation to the edifice of biology. Am J Pathol 98(1):44

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber Mat Nat Kl Kais Akad Wiss Wien 111:69–92

    Google Scholar 

  6. Hanning B (1904) Uber die Kultur von Cruciferen-Embryonen ausserhalb des Embryosachs. Bot Zeitung 62:45–80

    Google Scholar 

  7. Gautheret R (1939) Sur la possibilité de réaliser la culture indéfinie des tissues de tubercules de carotte. CR Soc Biol Paris 208:118–120

    Google Scholar 

  8. White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller CO, Skoog F, Okumura FS, Malcolm H, Saltza V, Strong FM (1955) Structure and synthesis of kinetin. J Am Chem Soc 77(9):2662–2663

    Article  CAS  Google Scholar 

  10. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–140

    CAS  PubMed  Google Scholar 

  11. Bergman L (1959) A new technique for isolating and cloning cells of higher plants. Nature 184:648–649

    Article  Google Scholar 

  12. Kohlenbach HW (1966) Die Entwicklungspotenzen explantierter und isolierter Dauerzellen. I. Das Streckungs-und Teilungswachstum isolierter Mesophyllzellen von Macleaya cordata. Z Pflanzenphysiol 55:142–157

    Google Scholar 

  13. Vasil V, Hildebrandt AC (1965) Growth and tissue formation from single, isolated tobacco cells in microculture. Science 147:1454–1455

    Article  CAS  PubMed  Google Scholar 

  14. Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  15. Limasset P, Cornuet P (1949) Recherche du virus de la masoïque du tabac (Marmor tabaci Holmes) dans les méristèmes des plantes infectées. CR Acad Sci Paris 228:1971–1972

    Google Scholar 

  16. Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie à virus. CR Acad Sci Paris 235:1324–1313

    CAS  Google Scholar 

  17. Quak F (1961) Heat treatment and substances inhibiting virus multiplication in meristem culture to obtain virus-free plant. Adv Hortic Sci 1:144–148

    Google Scholar 

  18. Boxus P (1974) The production of strawberry plants by in vitro micropropagation. J Hortic Sci 49:209–210

    Article  CAS  Google Scholar 

  19. Druart P (1980) Plantlet regeneration from root callus of different Prunus species. Sci Hortic 12(4):339–342

    Article  CAS  Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  21. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura, 1964. Nature 204(4957):497

    Article  Google Scholar 

  22. Ting IP (1982) Plant physiology. Addison-Wesleyn, Reading, p 642

    Google Scholar 

  23. Murashige T (1978) The impact of plant tissue culture on agriculture, In: Thorpe TA (ed) Frontiers of plant tissue culture. International Association of Plant Tissue Culture, University of Calgary Printing Services

    Google Scholar 

  24. Conger BV (1981) Cloning agricultural plants via in vitro techniques. CRC Press, Boca Raton

    Google Scholar 

  25. Kane ME (2005) Shoot culture procedures. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC Press, Boca Raton/London/New York/Washington, DC

    Google Scholar 

  26. Kurtz S, Hartmann RD, Chu IYE (1991) Current methods of commercial micropropagation. In: Vasil IK (ed) Scale-up and automation in plant propagation, vol 8, Cell culture and somatic cell genetics of plants. Academic, San Diego

    Chapter  Google Scholar 

  27. Debergh PC, Maene LJ (1981) A scheme for commercial propagation of ornamental plants by tissue culture. Sci Hortic 14:335–345

    Article  Google Scholar 

  28. George EF (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analoguesand inhibitors; miscellaneous compounds. In: George EF et al (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht

    Google Scholar 

  29. Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation: principles and practices, 7th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  30. Fabbri A, Bartoloni G, Lambardi M, Kailis SG (2004) Olive propagation manual. CSIRO Publishing, Collingwood

    Google Scholar 

  31. Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut roostock. Hortic Sci 19:507–509

    Google Scholar 

  32. Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability and medium development using analytical data from developing shoot and embryos. Sci Hortic 24:123–134

    Article  CAS  Google Scholar 

  33. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  34. Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S (2007) Micropropagation of olive Olea europaea L. and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol Plant 43:473–478

    Article  CAS  Google Scholar 

  35. Revilla MA, Pacheco J, Casares A, Rodríguez R (1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell Dev Biol Plant 32:257–261

    Article  Google Scholar 

  36. Otero LM, Docampo DM (1998) Micropropagation of olive (Olea europaea L.) cv. ‘Arbequina’ from juvenile cuttings. Phyton 63:133–140

    Google Scholar 

  37. García-Férriz L, Ghorbel R, Ybarra M, Marì A, Belaj A, Trujillo I (2002) Micropropagation from adult olive trees. Acta Hortic 586:879–882

    Article  Google Scholar 

  38. Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of the Greek olive cultivar ‘Chondrolia Chalkidikis’. Plant Cell Tissue Organ Cult 71:47–54

    Article  CAS  Google Scholar 

  39. Briccoli Bati C, Librandi A, Sirianni T (1994) In vitro propagation of two olive cultivars. International congress of plant tissue and cell culture Firenze, 12–17 Jun (Abstract pp 72)

    Google Scholar 

  40. Rugini E, Fontanazza G (1981) In vitro propagation of ‘Dolce Agogia’ olive. HortSci 16:492–493

    Google Scholar 

  41. Mangal M, Sharma D, Sharma M, Kumar S (2014) In vitro regeneration in olive (Olea europaea L.) cv, ‘Frontio’ from nodal segments. Indian J Exp Biol 52:912–916

    PubMed  Google Scholar 

  42. Mencuccini M (1998) Micropropagazione della cv FS-17. Olivo Olio 6:35–39

    Google Scholar 

  43. Peixe A, Raposo A, Lourenco R, Cardoso H, Macedo E (2007) Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci Hortic 113:1–7

    Article  CAS  Google Scholar 

  44. Rama P, Pontikis CA (1990) In vitro propagation of olive (Olea europea sativa L.) ‘Kalamon’. J Hortic Sci 65:347–353

    Article  CAS  Google Scholar 

  45. Dimassi-Theriou K (1994) In vitro propagation of cv. Kalamon olives (Olea europaea sativa L.). Adv Hortic Sci 8(4):185–189

    Google Scholar 

  46. Ozkaya TM, Lionakis MS, Vasilakakis DM (2003) Factors affecting the in vitro regeneration and the rooting of defoliated cuttings of the olive cultivars ‘Kalamon’ and ‘Koroneiki’. Biotechnol Biotechnol Equip 17(2):70–76

    Article  Google Scholar 

  47. Bartolini G, Leva AR, Benelli A (1990) Advances in in vitro culture of the olive: propagation of cv. Maurino. Acta Hortic 286:41–44

    Article  Google Scholar 

  48. Seyhan S, Özzambak E (1994) Shoot multiplication of some olive (Olea europaea L.) cultivars. Acta Hortic 356:35–38

    Article  Google Scholar 

  49. Chaari-Rkhis A, Trigui A, Drira N (1997) Micropropagation of olive tree Tunisian Cultivars: preliminary results. Acta Hortic 474(1):79–81

    Google Scholar 

  50. Chaari-Rkhiss A, Maalej M, Chelli-Chaabouni A, Trigui A, Drira N (2002) Meski olive variety propagated by tissue culture. Acta Hortic 586:871–874

    Article  Google Scholar 

  51. Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of olive “Mission” explants. Asian J Plant Sci 8:505–509

    Article  Google Scholar 

  52. Rostami АА, Shahsavar АR (2012) In vitro micropropagation of olive (Olea europaea L.) ‘Mission’ by nodal segments. J Biol Environ Sci 6(17):155–159

    Google Scholar 

  53. Ali A, Ahmad T, Abbasi AN, Hafiz AI (2009) Effect of different media and growth regulators on in vitro shoot proliferation of olive cultivar ‘Moraiolo’. Pak J Bot 41(2):783–795

    CAS  Google Scholar 

  54. Zacchini M, De Agazio M (2004) Micropropagation of a local olive cultivar for germplasm preservation. Biol Plant 48(4):589–592

    Article  Google Scholar 

  55. Briccoli Bati C, Lombardo N (1995) Propagazione in vitro della cv Nocellara etnea. Atti Con. ‘Olivicoltura mediterranea: stato e prospettive della coltura e della ricerca’, Rende (CS), 26–28 gennaio, pp 249–257

    Google Scholar 

  56. Chaari Rkhis A, Maalej M, Drira N, Standardi A (2011) Micropropagation of olive tree Olea europaea L. ‘Oueslati’. Turk J Agric For 35:403–412

    CAS  Google Scholar 

  57. Peyvandi M, Farahani F, Noormohamadi Z, Banihashemi O, Mazinani HM, Ataee S (2009) Mass production of Olea europea L. (cv. Rowghani) through micropropagation. Gen Appl Plant Physiol 35(1–2):35–43

    CAS  Google Scholar 

  58. Sghir S, Chatelet P, Ouazzan N, Dosba F, Belkoura I (2005) Micropropagation of eight Moroccan and French olive cultivars. Hortic Sci 40(1):1993–1196

    Google Scholar 

  59. De Klerk GJ, Krieken WVD, Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities (Review). In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  60. De Klerk GJ (2002) Rooting of microcuttings: theory and practice. In Vitro Cell Dev Biol Plant 38:415–422

    Article  CAS  Google Scholar 

  61. Hazarika BN (2003) Acclimatization of tissue-cultured plants. Curr Sci 85(12):1704–1712

    CAS  Google Scholar 

  62. Aitken-Christie J, Kozai T, Takayama S (1995) Automation in tissue culture – general introduction and overview. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer, Dordrecht

    Chapter  Google Scholar 

  63. Ziv M (2005) Liquid culture systems for in vitro plant propagation. Plant Cell Tissue Org Cult 81(3):277–285

    Article  Google Scholar 

  64. Takajama S, Misawa M (1981) Mass propagation of Begonia × hiemalis plantlets by shake culture. Plant Cell Physiol 22(3):461–467

    Google Scholar 

  65. Debnath SC (2011) Bioreactors and molecular analysis in berry crop micropropagation. A review Can. J Plant Sci 91:147–157

    Google Scholar 

  66. Paek KY, Hahn EJ, Son SH (2001) Application of bioreactrs of large scale micropropagation systems of plants. In Vitro Cell Dev Biol Plant 37:149–157

    Article  CAS  Google Scholar 

  67. Mamun NHA, Egertsdotter U, Aidun C (2015) Bioreactor technology for clonal propagation of plants and metabolite production. Front Biol 10(2):177–193

    Article  CAS  Google Scholar 

  68. Paque M, Bercetche J, Dumas E (1992) Liquid media to improve and reduce the cost of in vitro conifer propagation. Acta Hortic 319:95–100

    Article  Google Scholar 

  69. A Archambault J, Lavoie L, Williams RD, Chavarie C (1995) Nutritional aspects of Daucus carota embryo cultures performed in bioreactors. In: Terzi M, Cella R, Flavinga A (eds) Current issues in plant tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 681–687

    Google Scholar 

  70. Ziv M (1995b) The control of bioreactor environment for plant propagation in liquid culture. Acta Hortic 3199:25–38

    Article  Google Scholar 

  71. Heyerdahl PH, Olsen OAS, Hvoslef-Eide AK (1995) Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environment control in plant tissue culture. Kluwer, Dordrecht, pp 87–123

    Chapter  Google Scholar 

  72. Takayama S, Akita M (1994) The types of bioreactors used for shoots and embryos. Plant Cell Tissue Organ Cult 39:147–156

    Article  Google Scholar 

  73. Harris R, Masson E (1983) Two machines for in vitro propagation of plants in liquid media. Can J Plant Sci 63:311–316

    Article  Google Scholar 

  74. Debnath SC (2008a) Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can J Plant Sci 88:737–746

    Article  CAS  Google Scholar 

  75. Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tissue Organ Cult 32:55–60

    Article  Google Scholar 

  76. Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M, Cella R, Flavinga A (eds) Current issues in plant molecular and cellular biology. Kluwer, Dordrecht, pp 105–110

    Chapter  Google Scholar 

  77. Debnath S (2009b) A two-step procedure for adventitious shoot regeneration on excised leaves of lowbush blueberry. In Vitro Cell Dev Biol Plant 45:122–128

    Article  Google Scholar 

  78. Debnath SC (2009c) Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nord J Bot 27:141–148

    Article  Google Scholar 

  79. Debnath SC (2009d) Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng Life Sci 9:239–246

    Article  CAS  Google Scholar 

  80. Dzhambazova T, Badjakov I, Dincheva I, Georgieva M, Tsvetkov I, Pavlov A, Marchev M, Mihalev K, Ivanov G, Kondakova V, Batchvarova R, Atanassov A (2015) New approaches for detection of unique qualities of small fruits. In: Omics technologies and crop improvement. CRC Press, Taylor & Francis Group, Boca Raton, pp 187–208

    Google Scholar 

  81. Georgieva L, Tsvetkov I, Georgieva M, Kondakova V (2016) New protocol for in vitro propagation of berry plants by TIS bioreactor. Bulgarian J Agr Sci 22(5):745–751

    Google Scholar 

  82. Debnath SC (2009a) A scale-up system for lowbush blueberry micropropagation using a bioreactor. Hortic Sci 44:1962–1966

    Google Scholar 

  83. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high value clonal forestry: development, genetic control and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239

    Article  Google Scholar 

  84. Jayasankar S, Gray DJ, Litz RE (1999) High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18:533–537

    Article  CAS  Google Scholar 

  85. Ramachandra SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:1001–1153

    Google Scholar 

  86. Siahsar B, Rahimi M, Tavassoli A, Raissi AS (2011) Application of biotechnology in production of medicinal plants. J Agric Environ Sci 11(3):439–444

    CAS  Google Scholar 

  87. Lila MA (2005) Valuable secondary products from in vitro culture. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC Press LLC, pp 285–289

    Google Scholar 

  88. Rao RS, Ravishankar GA (2002) Plant tissue cultures; chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  89. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med plant Res 3(13):1222–1239

    CAS  Google Scholar 

  90. Hellwig S, Drossard J, Twyyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  CAS  PubMed  Google Scholar 

  91. LaCount DJ, Lee JM (1997) The effect of polyvinylpyrrolidone (PVP) on the heavy chain monoclonal antibody production from plant suspension culture. Biotechnol Lett 1:93–96

    Article  Google Scholar 

  92. Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots and cells suspensions. Biotechnol Bioeng 54:401–415

    Article  CAS  PubMed  Google Scholar 

  93. Sharp JM, Doran PM (1999) Effect of bacitracion on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions. Biotechnol Bioprocess Eng 4:253–258

    Article  CAS  Google Scholar 

  94. Fischer R, Liao Y-C, Drossard J (1999) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods 226:1–10

    Article  CAS  PubMed  Google Scholar 

  95. Fischer R, Emans N, Schuster F, Hellwig SJ, Drossard J (1999) Towards molecular farming in the future: using plant-cells-suspension cultures as bioreactors. Biotechnol Appl Biochem 30:109–112

    CAS  PubMed  Google Scholar 

  96. Liu F, Lee JM (1999) Effect of culture conditions on monoclonal antibody production from genetically modified tobacco suspension cultures. Biotechnol Bioprocess Eng 4:259–263

    Article  CAS  Google Scholar 

  97. Kurata H, Takemura T, Furusaki S, Kado CI (1998) Light-controlled expression of a foreign gene using the chalcone synthase promoter in tobacco BY-2 cells. J Ferment Bioeng 6:317–323

    Article  Google Scholar 

  98. Ma JK-C, Lehner T, Stabila P, Fux CI, Hiatt A (1994) Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur J Immunol 24:131–138

    Article  CAS  PubMed  Google Scholar 

  99. Ma JK-C, Hiatt A, Hein MB, Vine N, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  CAS  PubMed  Google Scholar 

  100. Kusnadi AR, Nikolov ZL, Howard JA (1997) Production of recombinant protein in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484

    Article  CAS  PubMed  Google Scholar 

  101. Marino G, Battistini S (1990) Leaf-callus growth, shoot regeneration and somaclonal variation in Actinidia deliciosa; effect of media pH. Acta Hortic 280:37–44

    Article  Google Scholar 

  102. Larkin PJ, Scowcroft WR (1981) Somaclonal variation. A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  103. Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64:185–210

    Article  CAS  Google Scholar 

  104. D’Amato F (1990) Somatic nuclear mutations in vivo and in vitro in higher plants. Caryologia 43:191–204

    Article  Google Scholar 

  105. Damiano C (1980) Strawberry micropropagation. In: Proceedings of the conference on nursery production of fruit plants through tissue culture: applications and feasibility. USA-SEA, Agricultural Research Results, ARR-NE-11, Beltsville. pp 93–101

    Google Scholar 

  106. Boxus Ph, Damiano C, Brasseur E (1984) In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of plant cell culture, vol 2, Crop species. Mac Millan, New York/London

    Google Scholar 

  107. Carlson PS, Smith HH, Dearing R (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci U S A 69:2292–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takebe H, Miki Y, Kozuka T, Furuyama J, Tanaka K, Sasaki MS, Fujiwara Y, Akiba H (1977) DNA repair characteristics and skin cancers of Xeroderma pigmentosum in Japan. Cancer Res 37:490

    CAS  PubMed  Google Scholar 

  109. Evans DA, Bravo JE (1988) Agricultural applications of protoplasts fusion. In: Marby TI (ed) Plant biotechnology. University of Texas Press, Austin, pp 51–91

    Google Scholar 

  110. Kondakova V, Druart Ph (2001) True-to type protoclones regeneration from mesoophyll protoplasts of “Inmil” cherry rootstock (Prunus incise × serrula) Acta Hortic. 560 IV IC on In Vitro Cult &Hort. Breading, pp 521–524

    Google Scholar 

  111. Krens FA, Molendijk L, Wullems GJ, Schilperot RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature (London) 296:72–74

    Article  CAS  Google Scholar 

  112. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature (London) 187:962–963

    Article  Google Scholar 

  113. Motomura T, Hidaka T, Akihama T, Omura M (1997) Protoplast fusion for production of hybrid plants between citrus and its related genera. J Japan Soc Hortic Sci 65:685–692

    Article  Google Scholar 

  114. Liu ZY, Chen PD, Pei GZ, Wang YN, Qin BX, Wang SL (1988) Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In: Proceedings of the 7th international wheat genetics sumposium, Cambridge, UK, pp 355–361

    Google Scholar 

  115. Morrison GC (1998) Understanding the disparity between WTP and WTA: endowment effect, substitutability, or imprecise preferences? Econ Lett 59(2):189–194

    Article  Google Scholar 

  116. Basu SK, Datta M, Sharma M, Kumar A (2011) Haploid plant production technology in wheat and some selected higher plants. Aust J Crop Sci 5(9):1087–1093

    Google Scholar 

  117. Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Biotechnology agriculture forestry. Springer, Berlin, pp 3–44

    Google Scholar 

  118. Yeung EC, Thorpe TA, Jensen CJ (1981) In vitro fertilization and embryo culture in plant tissue culture. In: Thorpe TA (ed) Methods and applications in agriculture. Academic, New York, pp 253–271

    Google Scholar 

  119. Chauhan H, Khuurana P (2011) Use of double haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417

    Article  CAS  PubMed  Google Scholar 

  120. Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3(2):136–145

    Google Scholar 

  121. Pitman NCA, Jorgensen PM (2002) Estimating the size of the world’s threatened flora. Science 298:989

    Article  CAS  PubMed  Google Scholar 

  122. Ramanatha RV, Riley R (1994) The use of biotechnology for conservation and utilization of plant genetic resources. Plant Genet Resour Newsl 97:3–20

    Google Scholar 

  123. Withers LA (1995) Collecting in vitro for genetic resources conservation. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant germplasm diversity: technical guidelines. CABI, Wallingford

    Google Scholar 

  124. Withers LA, Engelman F (1997) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88

    Chapter  Google Scholar 

  125. Engelmann F, Engels JMM (2002) Technology and strategies for ex situ conservation. In: Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International, IPGRI, Wallingford/Rome, pp 89–104

    Google Scholar 

  126. Fay MF (1992) Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev Biol Plant 28:1–4

    Article  Google Scholar 

  127. Paunesca A, Holobiuc I (2005) Preliminary researches concerning micropropagation of some endemic plants from Romanian flora. Acta Hortic Bot Bucurest 32:103–108

    Google Scholar 

  128. Sarasan VA, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants-progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214

    Article  Google Scholar 

  129. Kaczmarczyk A, Shvachko N, Lupysheva Y, Hajirezaei MR, Keller ERJ (2008) Influence of altering temperature preculture on cryopreservation results for potato shoot tips. Plant Cell Rep 27:1551–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Engelmann F (1997) In vitro conservation methods. In: Ford-Lioyd BV, Newbury HJ, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wallingford, pp 119–162

    Google Scholar 

  131. Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 195–230

    Google Scholar 

  132. Engelmann F (2000) Improvement of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. IPGRI, Rome

    Google Scholar 

  133. Scottez C, Chevreau E, Godard N, Arnaud Y, Duron M, Dereuddre J (1992) Cryopreservation of cold-acclimated shoot tips of pear in vitro cultures after encapsulation-dehydration. Cryobiology 29:691–700

    Article  Google Scholar 

  134. Bekheet SA, Taha HS, Saker MM, Solliman ME (2007) Application of cryopreservation techniques for in vitro grown date palm (Phoenix dactylifera L.) cultures. J Appl Sci Res 3(9):859–866

    CAS  Google Scholar 

  135. Redenbaugh K, Fujii J, Slade D, Viss P, Kossler M (1991) Artificial seed-encapsulated somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, high-tech and micropropagation. Springer, Heidelberg, pp 395–416

    Google Scholar 

  136. Bernard F, Shaker-Bazarnov H, Kaviani B (2002) Effect of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L). Euphytica 123:85–88

    Article  CAS  Google Scholar 

  137. Duran-Vila N (1995) Cryopreservation of germplasm of Citrus. In: Bajaj YPS (ed) Cryopreservation of plant germplasm I, vol 32, Biotechnology in agriculture and forestry. Springer, Berlin/Heidelberg/New York, pp 70–85

    Chapter  Google Scholar 

  138. Takagi H (2000) Recent development in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takai H (eds) Cryopreservation of tropical plant germplasm progress and application. JIRCAS/IPGRI Publication, Tsukuba, pp 178–193

    Google Scholar 

  139. Vidal N, Sanchez C, Jorquera L, Ballester A, Vieitez AM (2005) Cryopreservation of chestnut by vitrification of in vitro-grown shoot tips. In Vitro Cell Dev Biol Plant 41:63–68

    Article  CAS  Google Scholar 

  140. Wang YL, Fan MJ, Liaw SI (2005) Cryopreservation of in vitro-grown shoot tips of papaya (Carica papaya L.) by vitrification. Bot Bull Acad Sin 46:29–34

    Google Scholar 

  141. Sasson A (1993) Biotechnologies in developing countries, present and future, vol 1. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  142. Franklin G, Lakshmi SG (2003) Agrobacterium tumefaciens-mediated transformation of eggplants (Solanum melongena L.) using root explants. Plant Cell Rep 21:549–554

    CAS  PubMed  Google Scholar 

  143. Chung SM, Manjusha V, Tzfira T (2006) Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Plant Sci 11(1):1–4

    Article  CAS  PubMed  Google Scholar 

  144. Purkayastha J, Sugla T, Paul A, Maumdar P, Basu A, Solleti SK, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apiecs and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20

    Article  CAS  Google Scholar 

  145. Misra M, Misra AN (1993) Genetic transformation of grass pea. In: DAE symposium on photosynth plant molecular biology, BRNS/DAE, Government of India, pp 246–251

    Google Scholar 

  146. Khan RS, Alam SS, Munir I, Azadi P, Nakamura I, Mii M (2011) Botritis cinerea resistant marker-free Petunia hybrida produced using the MAT vector system. Plant Cell Tissue Organ Cult 106:11–20

    Article  Google Scholar 

  147. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall R, Citovsky CV (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mohan Jain S, Saxena PK (2009) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, Methods in molecular biology, vol 547. Humana Press, c/o Springer Science + Business Media, LLC, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Kondakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yancheva, S., Kondakova, V. (2018). Plant Tissue Culture Technology: Present and Future Development. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54600-1_16

Download citation

Publish with us

Policies and ethics