Skip to main content

Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing

  • Reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Abstract

Tissue engineering and regenerative medicine therapies require understanding how molecules and cells coordinate together to influence system level behavior. A key obstacle to advancing our understanding of physiological systems is the inability to probe the specific component-level effects when biological experiments fall short of providing the necessary spatial and temporal resolution over the time course of a response. Hence, a critical question emerges: How can we gain new views not possible with in vivo experiments? The objective of this chapter will be to highlight the impact of biomimetic models, including in vitro, ex vivo, and computational approaches for advancing our understanding of the cellular dynamics involved in microvascular remodeling, which is needed for engineering thick tissues and a common denominator for many pathologies. This overview emphasizes the multiscale cellular complexity of microvascular growth and provides examples of integrative models that offer novel perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  Google Scholar 

  • Akbari E, Spychalski GB, Song JW (2017) Microfluidic approaches to the study of angiogenesis and the microcirculation. Microcirculation 24(5):e12363

    Article  Google Scholar 

  • Anderson CR, Hastings NE, Blackman BR, Price RJ (2008) Capillary sprout endothelial cells exhibit a CD36low Phenotype: regulation by shear stress and vascular endothelial growth factor-induced mechanism for attenuating anti-proliferative thrombospondin-1 signaling. Am J Pathol 173(4):1220–1228

    Article  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Google Scholar 

  • Arthur WT, Vernon RB, Sage EH, Reed MJ (1998) Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvasc Res 55(3):260–270

    Article  Google Scholar 

  • Azimi MS, Myers L, Lacey M, Stewart SA, Shi Q, Katakam PV, Mondal D, Murfee WL (2015) An ex vivo model for anti-angiogenic drug testing on intact microvascular networks. PLoS One 10(3):e0119227

    Article  Google Scholar 

  • Azimi MS, Motherwell JM, Hodges NA, Rittenhouse GR, Majbour D, Porvasnik SL, Schmidt CE, Murfee WL (2019) Lymphatic-to-blood vessel transition in adult microvascular networks: a discovery made possible by a top-down approach to biomimetic model development. Microcirculation 27(2):e12595

    Google Scholar 

  • Bailey AM, Thorne BC, Peirce SM (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 35(6):916–936

    Article  Google Scholar 

  • Bailey AM, Lawrence MB, Shang H, Katz AJ, Peirce SM (2009) Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin. PLoS Comput Biol 5(2):e1000294

    Article  Google Scholar 

  • Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO (2008) VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res 78(2):315–323

    Article  Google Scholar 

  • Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Afonyushkin T, Gruber F, Breuss J, Minchenko A, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Erne P, Binder BR, Leitinger N (2006) Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms, implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ Res 99(8):900–908

    Article  Google Scholar 

  • Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL (2018) Lymphatic vessel network structure and physiology. Compr Physiol 9(1):207–299. https://doi.org/10.1002/cphy.c180015

    Article  Google Scholar 

  • Burks HE, Phamduy TB, Azimi MS, Saksena J, Burow ME, Collins-Burow BM, Chrisey DB, Murfee WL (2016) Laser direct-write onto live tissues: a novel model for studying cancer cell migration. J Cell Physiol 231(11):2333–2338

    Article  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231(3):474–488

    Article  Google Scholar 

  • Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD (2018) 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–129

    Article  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389

    Article  Google Scholar 

  • Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193

    Article  Google Scholar 

  • Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD (2012) Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting. PLoS One 7(12):e50582

    Article  Google Scholar 

  • Chappell JC, Wiley DM, Bautch VL (2011) Regulation of blood vessel sprouting. Semin Cell Dev Biol 22(9):1005–1011

    Article  Google Scholar 

  • Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL (2016) Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovasc Res 111(1):84–93

    Article  Google Scholar 

  • Chen LJ, Ito S, Kai H, Nagamine K, Nagai N, Nishizawa M, Abe T, Kaji H (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7(1):3538

    Article  Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49(3):507–521

    Article  Google Scholar 

  • Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL (2016) Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. (New York, N.Y.: 1994) 23(2):95–121

    Article  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560

    Article  Google Scholar 

  • Eichmann A, Noble FL, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15(1):108–115

    Article  Google Scholar 

  • Fraser GM, Goldman D, Ellis CG (2012) Microvascular flow modeling using in vivo hemodynamic measurements in reconstructed 3D capillary networks. Microcirculation 19(6):510–520

    Article  Google Scholar 

  • Fu Y, Nagy JA, Dvorak AM, Dvorak HF (2008) Tumor blood vessels. In: Teicher BA, Ellis LM (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press., pp 205–224. https://doi.org/10.1007/978-1-59745-184-0_12

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  Google Scholar 

  • Gomillion CT, Yang C-C, Dréau D, Burg KJL (2017) Engineered composites for 3D mammary tissue systems. Eng 3D Tissue Test Syst 141–168. https://www.scribd.com/document/436249571/Engineering-3d-Tissue-Test-Systems

  • Hall KL, Volk-Draper LD, Flister MJ, Ran S (2012) New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS One 7(3):e31794

    Article  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  Google Scholar 

  • Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23(5):661–668

    Google Scholar 

  • Hungerford J, Little C (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36(1):2–27

    Article  Google Scholar 

  • Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K, Kamiya A (1997) Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res 72(1):29–35

    Article  Google Scholar 

  • Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48(10):2641–2658

    Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685

    Article  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953

    Article  Google Scholar 

  • Kang DH, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, Schreiner GF, Johnson RJ (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13(3):806–816

    Article  Google Scholar 

  • Karamysheva AF (2008) Mechanisms of angiogenesis. Biochem Mosc 73(7):751–762

    Article  Google Scholar 

  • Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12

    Article  Google Scholar 

  • Kaunas R, Kang H, Bayless KJ (2011) Synergistic regulation of angiogenic sprouting by biochemical factors and wall shear stress. Cell Mol Bioeng 4(4):547–559

    Article  Google Scholar 

  • Kelly-Goss MR, Winterer ER, Stapor PC, Yang M, Sweat RS, Stallcup WB, Schmid-Schönbein GW, Murfee WL (2012) Cell proliferation along vascular islands during microvascular network growth. BMC Physiol 12(1):7

    Article  Google Scholar 

  • Kelly-Goss MR, Sweat RS, Azimi MS, Murfee WL III (2013) Vascular islands during microvascular regression and regrowth in adult networks. Front Physiol 4:108

    Article  Google Scholar 

  • Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL (2014) Targeting pericytes for angiogenic therapies. Microcirculation 21(4):345–357

    Article  Google Scholar 

  • Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104(4):428–441

    Article  Google Scholar 

  • Li D, Finley SD (2019) Exploring the extracellular regulation of the tumor angiogenic interaction network using a systems biology model. Front Physiol 10:823

    Article  Google Scholar 

  • Lv D, Hu Z, Lu L, Lu H, Xu X (2017) Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol Lett 14(6):6999–7010

    Google Scholar 

  • Mac Gabhann F, Popel AS (2004) Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Phys Heart Circ Phys 286(1):H153–H164

    Google Scholar 

  • Magdoom KN, Pishko GL, Kim JH, Sarntinoranont M (2012) Evaluation of a voxelized model based on DCE-MRI for tracertransport in tumor. J Biomech 134:091004

    Article  Google Scholar 

  • Magdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW et al (2014) MRI-based computational model of heterogeneous tracer transport following local infusion into a mouse hind limb tumor. PLoS One 9(3):e89594

    Article  Google Scholar 

  • Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372

    Article  Google Scholar 

  • Mi H, Haeberle H, Barres BA (2001) Induction of astrocyte differentiation by endothelial cells. J Neurosci 21:1538–1547

    Article  Google Scholar 

  • Milkiewicz M, Brown MD, Egginton S, Hudlicka O (2001) Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8(4):229–241

    Article  Google Scholar 

  • Motherwell JM, Rozenblum M, Katakam PV, Murfee WL (2019) Bioreactor system to perfuse mesentery microvascular networks and study flow effects during angiogenesis. Tissue Eng Part C Methods 25(8):447–458

    Article  Google Scholar 

  • Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19(9):730–737

    Article  Google Scholar 

  • Mukouyama Y-S, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109(6):693–705

    Article  Google Scholar 

  • Murfee WL (2015) Implications of fluid shear stress in capillary sprouting during adult microvascular network remodeling. Mechanobiol Endothelium 166–184

    Google Scholar 

  • Murfee WL, Rehorn MR, Peirce SM, Skalak TC (2006) Perivascular cells along venules upregulate NG2 expression during microvascular remodeling. Microcirculation 13(3):261–273

    Article  Google Scholar 

  • Murfee WL, Sweat RS, Tsubota KI, Gabhann FM, Khismatullin D, Peirce SM (2015) Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. Interface Focus 5(2):20140077

    Article  Google Scholar 

  • Nicosia RF, Ottinetti A (1990) Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 63(1):115–122

    Google Scholar 

  • Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10(3):588–612

    Article  Google Scholar 

  • Osaki T, Serrano JC, Kamm RD (2018) Cooperative effects of vascular angiogenesis and lymphangiogenesis. Regen Eng Transl Med 4(3):120–132

    Article  Google Scholar 

  • Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC (2019) The pericyte microenvironment during vascular development. Microcirculation 26(8):e12554

    Article  Google Scholar 

  • Peirce SM (2008) Computational and mathematical modeling of angiogenesis. Microcirculation 15(8):739–751

    Article  Google Scholar 

  • Peirce SM, Skalak TC (2003) Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10(1):99–111

    Article  Google Scholar 

  • Peirce SM, Van Gieson EJ, Skalak TC (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J 18(6):731–733

    Article  Google Scholar 

  • Pishko GL, Astary GW, Mareci TH, Sarntinoranont M (2011) Sensitivityanalysis of animage-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng 39:2360–2373

    Article  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Phys Heart Circ Phys 275(2):H349–H360

    Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2005) Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46(4):725–731

    Article  Google Scholar 

  • Qiu Y, Ahn B, Sakurai Y, Hansen CE, Tran R, Mimche PN, Mannino RG, Ciciliano JC, Lamb TJ, Joiner CH, Ofori-Acquah SF, Lam WA (2018) Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng 2(6):453

    Article  Google Scholar 

  • Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372(2):157–165

    Article  Google Scholar 

  • Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154(2):355–363

    Article  Google Scholar 

  • Robichaux JL, Tanno E, Rappleye JW, Ceballos M, Stallcup WB, Schmid-Schönbein GW, Murfee WL (2010) Lymphatic/Blood endothelial cell connections at the capillary level in adult rat mesentery. Anat Rec Adv Integr Anat Evol Biol 293(10):1629–1638

    Article  Google Scholar 

  • Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci 99(16):10730–10735

    Article  Google Scholar 

  • Rylova SN, Randhawa PK, Bautch VL (2008) In vitro differentiation of mouse embryonic stem cells into primitive blood vessels. Methods Enzymol 443:103–117

    Article  Google Scholar 

  • Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD, Duffield JS (2012) Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol 23(5):868–883

    Article  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85(3):331–343

    Article  Google Scholar 

  • Skalak TC, Price RJ (1996) The role of mechanical stresses in microvascular remodeling. Microcirculation 3(2):143–165

    Article  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108(37):15342–15347

    Article  Google Scholar 

  • Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488

    Article  Google Scholar 

  • Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, Adams RH, Saur D, Betsholtz C, Ortega S, Alitalo K, Graupera M, Makinen T (2015) cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep 10(10):1708–1721

    Article  Google Scholar 

  • Stapor PC, Wang W, Murfee WL, Khismatullin DB (2011) The distribution of fluid shear stresses in capillary sprouts. Cardiovasc Eng Technol 2(2):124–136

    Article  Google Scholar 

  • Stapor PC, Azimi MS, Ahsan T, Murfee WL (2012) An angiogenesis model for investigating multicellular interactions across intact microvascular networks. Am J Phys Heart Circ Phys 304(2):H235–H245

    Google Scholar 

  • Stapor PC, Azimi MS, Ahsan T, Murfee WL (2013) An angiogenesis model for investigating multicellular interactions across intact microvascular networks. Am J Phys Heart Circ Phys 304(2):H235–H245

    Google Scholar 

  • Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51(3):163–174

    Article  Google Scholar 

  • Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80

    Article  Google Scholar 

  • Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101

    Article  Google Scholar 

  • Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(19):3729–3738

    Article  Google Scholar 

  • Sweat RS, Stapor PC, Murfee WL (2012) Relationships between lymphangiogenesis and angiogenesis during inflammation in rat mesentery microvascular networks. Lymphat Res Biol 10(4):198–207

    Article  Google Scholar 

  • Sweat RS, Sloas DC, Murfee WL (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21(6):532–540

    Article  Google Scholar 

  • Szekanecz Z, Koch AE (2004) Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin N Am 30(1):97–114

    Article  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  Google Scholar 

  • Tan WH, Popel AS, Mac Gabhann F (2013) Computational model of VEGFR2 pathway to ERK activation and modulation through receptor trafficking. Cell Signal 25(12):2496–2510

    Article  Google Scholar 

  • Thorne BC, Bailey AM, Peirce SM (2007) Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief Bioinform 8(4):245–257

    Article  Google Scholar 

  • Tsubota KI, Wada S (2010) Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane’s natural state. Int J Mech Sci 52(2):356–364

    Article  Google Scholar 

  • Ueda A, Koga M, Ikeda M, Kudo S, Tanishita K (2004) Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Phys Heart Circ Phys 287(3):H994–H1002

    Google Scholar 

  • Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P, Csiszar A (2018) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 15(9):555–565

    Article  Google Scholar 

  • Van Gieson EJ, Murfee WL, Skalak TC, Price RJ (2003) Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ Res 92(8):929–936

    Article  Google Scholar 

  • Walpole J, Chappell JC, Cluceru JG, Mac Gabhann F, Bautch VL, Peirce SM (2015) Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. Integr Biol 7(9):987–997

    Article  Google Scholar 

  • Walpole J, Mac Gabhann F, Peirce SM, Chappell JC (2017) Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation (New York, N.Y.: 1994) 24(8). https://doi.org/10.1111/micc.12393

  • Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Seminars in Cell & Developmental Biology 13(1):19–27

    Google Scholar 

  • Weiswald LB, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia (New York, N.Y.) 17(1):1–15

    Article  Google Scholar 

  • Yang M, Stapor PC, Peirce SM, Betancourt AM, Murfee WL (2012) Rat mesentery exteriorization: a model for investigating the cellular idynamics involved in angiogenesis. JoVE 63:e3954

    Google Scholar 

  • Zhao H, Chappell JC (2019) Microvascular bioengineering: a focus on pericytes. J Biol Eng 13(1):26

    Article  Google Scholar 

  • Zhao J, Salmon H, Sarntinoranont M (2007) Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter L. Murfee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dolan, R.M. et al. (2021). Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-54586-8_22

Download citation

Publish with us

Policies and ethics